Package ‘rsdepth’

February 20, 2015

Type Package

Title Ray Shooting Depth (i.e. RS Depth) functions for bivariate analysis

Version 0.1-5

Date 2014-05-31

Maintainer Mudassir Shabbir <mudassir@cs.rutgers.edu>

Description Ray Shooting Depth functions are provided for bivariate analysis.

Depends R (>= 2.4.0)

License GPL-2

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-06-04 07:15:06

R topics documented:

centroid ... 2
convexhull ... 3
drawcompletegraph .. 4
getbag ... 5
inflate ... 6
rsdepth ... 7
rsmed ... 8
rsplot ... 9
rsrings ... 10
rstinterval .. 11

Index 13
Description
Computes Centroid of a convex polygon in plane.

Usage
\texttt{centroid(x, y=NULL,...)}

Arguments
\texttt{x} \quad The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

\texttt{y} \quad The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

\texttt{...} \quad For future use.

Details
In dimension 2, calculates centroid of a convex polygon.

Value
Returns with respect to data set, the centroid point in plane.

Author(s)
Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also
\texttt{inflate}

Examples
```r
## calculation of centroid of a random pointset
z = matrix(rnorm(24),nc=2)
x = centroid(z)
```
Description
Convex Hull of a pointset in plane.

Usage
convexhull(x, y=NULL,...)

Arguments
x
The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

y
The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

... For future use.

Details
In dimension 2, calculates Convex Hull of a pointset.

Value
Returns with respect to data set, ordered set of points on the convex hull.

Author(s)
Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also
inflate

Examples
calculation of centroid of a random pointset
z = matrix(rnorm(24),nc=2)
x = convexhull(z)
drawcompletegraph

Draws Complete Graph of a pointset

Description

Draws Complete Graph of a pointset in plane.

Usage

```r
drawcompletegraph(x, y=NULL, startcanvas=TRUE, ...)
```

Arguments

- `x` The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).
- `y` The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).
- `startcanvas` A boolean value to let the function whether there is already a plot that we want to use or create a new canvas. Be default set to TRUE.
- `...` For future use.

Details

In dimension 2, draws complete graph on a pointset.

Value

Returns nothing.

Author(s)

Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also

`inflate`

Examples

```r
## calculation of centroid of a random pointset
z = matrix(rnorm(24), nc=2)
x = drawcompletegraph(z)
```
Description

Computes the Ray Shooting depth ISO of a point with respect to a bivariate data set.

Usage

getbag(x, y=NULL, factorsecondbag=2,...)

Arguments

x The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

y The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

factorsecondbag Factor of the second bag. Takes integer values. By default set to 2.

... For future use.

Details

In dimension 2, calculates ray shooting depth of a given point with respect to the point set. Time complexity of the simple algorithms implemented is O(n log n). ISO

Value

Returns with respect to data set pt, the number of line segments interested by a ray from , minimum over all rays. ISO

Author(s)

Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

N. Mustafa, S. Ray, and M. Shabbir, Statistical Data Depth of Pointsets in the Plane,in prep..

See Also

rsdepth
Examples

```r
## calculation of RS depth
z = matrix(rnorm(24),nc=2)
x = getbag(z)
```

inflate

Description

Inflates a convex polygon

Usage

`inflate(x, y=NULL, factor=2, ...)`

Arguments

- `x`: The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).
- `y`: The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).
- `factor`: An integer by default set to 2.
- `...`: For future use.

Details

In dimension 2, inflates a convex polygon

Value

Returns nothing.

Author(s)

Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also

`convexhull`
Examples

```r
## calculation of centroid of a random pointset
z = matrix(rnorm(24),nc=2)
x = convexhull(z)
y = inflate(x)
```

rsdepth

RS Depth calculation

Description
Computes the Ray Shooting depth of a point with respect to a bivariate data set.

Usage

```r
rsdepth(pt, q, ...)
```

Arguments

- `q`
 Numerical vector whose depth is to be calculated. Data needs to be 2-dimensional.

- `pt`
 The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

- `...`
 For future use.

Details
In dimension 2, calculates ray shooting depth of a given point with respect to the point set. Time complexity of the simple algorithms implemented is $O(n \log n)$.

Value
Returns the exact depth of bivariate point q with respect to data set pt, the number of line segments interested by a ray from q, minimum over all rays.

Author(s)
Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also
rsmed
Examples

```r
## calculation of RS depth
z = matrix(rnorm(24),nc=2)
x = matrix(rnorm(2),nc=2)
rsdepth(z, x)
```

rsmed

Bivariate RS median

Description

Computes the Ray Shooting median of a bivariate data set.

Usage

`rsmed(pt, eps=c(0),...)`

Arguments

- **pt**
 - The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one multivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations). Only 2-dimensional data is acceptable in this version.

- **eps**
 - eps is an optional parameter used for approximating a median in case of large data sets. It takes value of a real between 0 and 1 and is by default set to 0 which means no approximation is used if eps is not given.

- **...**
 - Reserved for future use.

Details

Finds out the an arbitrary point among the Ray Shooting median set of given point set. Current uses the brute-force algorithm on all \(O(n^4)\) possible points in the arrangement of all possible lines in complete graph on pt. For each point \(O(n \log n)\) is used to find out depth so overall complexity of this algorithm is \(O(n^4 \log n)\). When approximation parameter is provided then algorithm tries to approximate by finding median of a uniform sample subset of pt of size \(1/\text{eps}^2 \log(1/\text{eps})\). If this constant is more than the size of original set then eps value is ignored and exact median is calculate on original point set.

Value

A point in two dimension is returned as a single row two column vector

Author(s)

Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.
rsplot

References

See Also

rsdepth for depth function

Examples

```r
## RS median of a two-dimensional data set
set.seed(617)
zz <- matrix(rnorm(120), nc = 2)
rsmed(zz, eps=0.2)
```

rsplot Ray Shooting depth Bag

Description

Computes the Ray Shooting depth ISO of a point with respect to a bivariate data set.

Usage

rsplot(x, y=NULL, factorsecondbag=2, mring=T,...)

Arguments

x
The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

y
The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one bivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations).

factorsecondbag
Factor for second bag set to 2 by default.

mring
Boolean value set to TRUE by default.

...
For future use.

Details

In dimension 2, calculates ray shooting depth of a given point with respect to the point set. Time complexity of the simple algorithms implemented is O(n log n). ISO

Value

Returns with respect to data set pt, the number of line segments interested by a ray from , minimum over all rays. ISO
Author(s)
Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also
rsdepth

Examples

```r
## calculation of RS depth
z = matrix(rnorm(24),nc=2)
x = rsplot(z)
```

rsrings

Bivariate RS Rings

Description
Computes the Ray Shooting rings of a bivariate data set.

Usage

```r
rsrings(pt, numofrings=c(5), clr=FALSE,...)
```

Arguments

- `pt` The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one multivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations). Only 2-dimensional data is acceptable in this version.
- `numofrings` Total number of rings expected.
- `clr` Boolean for whether colors are used or not.
- `...` Reserved for future use.

Details
Finds out the an arbitrary point among the Ray Shooting median set of given point set. Current uses the brute-force algorithm on all $O(n^4)$ possible points in the arrangement of all possible lines in complete graph on pt. For each point $O(n \log n)$ is used to find out depth so overall complexity of this algorithm is $O(n^5 \log n)$. When approximation parameter is provided then algorithm tries to approximate by finding median of a uniform sample subset of pt of size $1/\varepsilon^2 \log(1/\varepsilon)$. If this constant is more than the size of original set then ε value is ignored and exact median is calculated on original point set.
Value

Number of rings returned

Author(s)

Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also

`rsdepth` for depth function

Examples

```r
## RS median of a two-dimensional data set
set.seed(617)
zz <- matrix(rnorm(60), nc = 2)
rsrings(zz)
```

rstinterval

Bivariate RS Rings

Description

Computes the Ray Shooting rings of a bivariate data set.

Usage

```r
rstinterval(pt, beta=c(0, 0.90), sampleSize=c(250), M=c(50), clr=FALSE, ...)
```

Arguments

- **pt**: The data as a matrix, data frame or list. If it is a matrix or data frame, then each row is viewed as one multivariate observation. If it is a list, all components must be numerical vectors of equal length (coordinates of observations). Only 2-dimensional data is acceptable in this version.
- **beta**: beta is a parameter between 0 and 1 determines the accuracy of the interval. Set to 0.90 by default.
- **sampleSize**: Size of the sample data set.
- **M**: Size of test data set.
- **clr**: Clear the canvas before use or not. Boolean and set to FALSE by default
- **...**: Reserved for future use.
Details
This function creates a two dimension generalization of confidence intervals of data. A bag that contains beta fraction of data points is constructed.

Value
Should not return anything

Author(s)
Nabil Mustafa, Saurabh Ray, and Mudassir Shabbir.

References

See Also
rsdepth for depth function

Examples
```r
## RS median of a two-dimensional data set
set.seed(617)
zz <- matrix(rnorm(600), nc = 2)
rstinterval(zz)
```
Index

*Topic bivariateCentroid
 centroid, 2
*Topic bivariateConvexhull
 convexhull, 3
drawcompletegraph, 4
 inflate, 6
*Topic bivariateISO
 getbag, 5
 rsplot, 9
*Topic bivariate
 rsdepth, 7
 rsmed, 8
 rsrings, 10
 rstinterval, 11
*Topic multivariate
 rsdepth, 7
 rsmed, 8
 rsrings, 10
 rstinterval, 11
*Topic nonparametric
 rsdepth, 7
 rsmed, 8
 rsrings, 10
 rstinterval, 11
*Topic robust
 rsdepth, 7
 rsmed, 8
 rsrings, 10
 rstinterval, 11

centroid, 2
convexhull, 3, 6
drawcompletegraph, 4
getbag, 5
inflate, 2–4, 6
rsdepth, 5, 7, 9–12
rsmed, 7, 8
rsplot, 9
rsrings, 10
rstinterval, 11