Package ‘rsem’

May 15, 2015

Type Package
Title Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
Version 0.4.6
Date 2015-05-14
Author Ke-Hai Yuan and Zhiyong Zhang
Maintainer Zhiyong Zhang <zhiyongzhang@nd.edu>
Depends R (>= 2.7), MASS, lavaan
Description A robust procedure is implemented to estimate means and covariance matrix of multiple variables with missing data using Huber weight and then to estimate a structural equation model.
License GPL-2
URL http://rpackages.psychstat.org
ZipData no
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-05-15 09:20:12

R topics documented:

rsem-package .. 2
mardiamv25 ... 3
rsem ... 3
rsem.Ascov ... 5
rsem.DP .. 6
rsem.emmusig .. 7
rsem.fit ... 8
rsem.gname .. 9
rsem.index ... 9
rsem.indexv ... 10
rsem-package

Description

This package estimates means and covariance matrix of multiple variables with missing data using Huber weight and then estimates a SEM model using either lavaan or EQS.

Details

Package: rsem
Type: Package
Version: 0.4.3
Date: 2010-12-27
License: GPL-2
LazyLoad: yes

Author(s)

Ke-Hai Yuan and Zhiyong Zhang Maintainer: Zhiyong Zhang <zhiyongzhang@nd.edu>

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
Description

mardiamv25: Original data
mardiamv25_contaminated: Contaminated data with outliers

Usage

data(mardiamv25)
data(mardiamv25_contaminated)

rsem
The main function for robust SEM analysis

Description

This is the function to carry out all analysis.

Usage

rsem(dset, select, EQSmodel, moment=TRUE, varphi=.1, st='i', max.it=1000, eqsdata='data.txt', eqsweight='weight.txt', EQSpgm="C:\Progra~1/EQS61/WINEQS.EXE", serial="1234")

Arguments

- **dset**: A data matrix or a data frame
- **select**: Variables to be selected for SEM analysis. If omitted, all variables in the data set will be used.
- **moment**: With mean structure. For covariance only, set moment=FALSE.
- **EQSmodel**: The input file for EQS. If omitted, only the first-stage analysis will be conducted.
- **varphi**: Proportion of data to be down-weighted. Default is 0.1.
- **max.it**: Maximum number of iterations for EM. Default is 1000
- **st**: Starting values for EM algorithm. The default is 0 for mean and I for covariance. Alternative, the starting values can be estimated according to MCD.
- **eqsdata**: Data file name used in EQS
- **eqsweight**: File name for weight matrix
- **EQSpgm**: The path to the installed EQS program
- **serial**: The serial no of EQS
Details

This function will run the robust analysis and output results.

Value

If EQSmodel is not supplied

- **sem**: Information for SEM analysis including estimated means, covariance matrix and their sandwich type covariance matrix in the order of mean first and then covariance matrix.
- **misinfo**: Information related to missing data pattern
- **em**: Results from expectation robust algorithm
- **ascov**: Covariance matrix

If EQSmodel is supplied,

- **sem**: Information for SEM analysis including estimated means, covariance matrix and their sandwich type covariance matrix according to the requirement of EQS.

In addition, the following model parameters are from EQS

- **fit.stat**: Fit indices and associated p-values
- **para**: Parameter estimates
- **eqs**: All information from REQS

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

See Also

- `rsem.pattern`, `rsem.emmusig`, `rsem.Ascov`

Examples

```r
## Not run:
## an example
## to use eqs, first load the package semdiag
library(semdiag)
data(mardiamv25)
analysis<-rsem(mardiamv25, c(1,2,4,5), 'eqsinput.eqn')

## End(Not run)
```
rsem.Ascov

Sandwich-type covariance matrix

Description

Returns the sandwich type covariance matrix. This function is not intended to use separately from the rsem.emmusig function.

Usage

rsem.Ascov(xpattern, musig, varphi=.1)

Arguments

xpattern Missing data pattern output from rsem.pattern.
musig Robust mean and covariance matrix from rsem.emmusig
varphi Proportion of data to be down-weighted. Default is 0.1.

Details

Data should be a matrix. To change a data frame to a matrix, using data.matrix(x).

Value

Abeta A matrix
Bbeta B matrix
Gamma Sandwich type covariance matrix

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

See Also

rsem.emmusig
Examples

```r
# dset <- read.table('MardiaMV25.dat.txt', na.string='99')
# dset <- data.matrix(dset)
# n <- dim(dset)[1]
# p <- dim(dset)[2]
# miss_pattern <- rsem.pattern(n, p, dset)
# misinfo <- miss_pattern$misinfo
# V_forana <- c(1, 2, 4, 5)
# em_results <- rsem.emmusig(dset, misinfo)
# hmu <- em_results$mu
# hsigma <- em_results$sigma
# rsem.Ascov(x, hmu, hsigma)
```

rsem.DP

Generate a duplication matrix

Description

Generate a duplication matrix

Usage

```r
rsem.DP(x)
```

Arguments

- `x` A matrix

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

Examples

```r
x <- array(1:6, c(2, 3))
rsem.DP(x)
```
Description

Robust mean and covariance matrix using Huber-type weight.

Usage

rsem.emmusig(xpattern, varphi=.1, max.it=1000, st='i')

Arguments

xpattern Missing data pattern output from rsem.pattern.
varphi Proportion of data to be down-weighted. Default is 0.1.
max.it Maximum number of iterations for EM. Default is 1000
st Starting values for EM algorithm. The default is 0 for mean and I for covariance. Alternative, the starting values can be estimated according to MCD.

Details

Estimate mean and covariance matrix using the expectation robust (ER) algorithm.

Value

err Error code. 0: good. 1: maximum iterations are exceeded.
mu Mean vector
sigma Covariance matrix

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

See Also

rsem.emmusig
Examples

```r
#dset<-read.table('MardiaMV25.dat.txt', na.string='--')
#dset<-data.matrix(dset)
#n<-dim(dset)[1]
#p<-dim(dset)[2]
#miss_pattern<-rsem.pattern(n,p,dset)
#misinfo<-miss_pattern$misinfo
#V_forana<-c(1,2,4,5)
#em_results<-rsem.emmusig(dset,misinfo)
#em_results
```

`rsem.fit`
Calculate robust test statistics

Description

Calculate robust test statistics

Usage

`rsem.fit(object, gamma, musig)`

Arguments

- `object`
 Output from lavaan analysis, such as growth, factor, sem functions.
- `gamma`
 Robust covariance matrix for saturated mean and covariances
- `musig`
 Robust saturated mean and covariances

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

Examples

```r
x<-array(1:6, c(2,3))
rsem.vec(x)
```
rsem.gname
Internal function

Description
Internal function

Usage
rsem.gname(name)

Arguments

name
Variable names.

Author(s)
Ke-Hai Yuan and Zhiyong Zhang

References
Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

rsem.index
rsem.index function

Description
To be added

Usage
rsem.index(p, oj)

Arguments

p
number of variables

oj
observed variables
rsem.indexv function

Description
Internal function.

Usage
rsem.indexv(p, select)

Arguments
- **p**: number of variables
- **select**: variables to be used

rsem.indexvc function

Description
Internal function.

Usage
rsem.indexvc(p, select)

Arguments
- **p**: number of variables
- **select**: variables to be used
Conduct robust SEM analysis using lavaan

Usage

rsem.lavaan(dset, model, select, varphi=.1, max.it=1000)

Arguments

dset A data matrix or a data frame
select Variables to be selected for SEM analysis. If omitted, all variables in the data set will be used.
model The model using lavaan syntax
varphi Proportion of data to be down-weighted. Default is 0.1.
max.it Maximum number of iterations for EM. Default is 1000

Details

This function will run the robust analysis and output results.

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

See Also

rsem.pattern, rsem.emmusig, rsem.Ascov

Examples

data(mardiamv25)
names(mardiamv25)<-paste('V', 1:5, sep='')

fa.model<- 'f1 =~ V1 + V2
f2 =~ V4 + V5
f1 ~ 1
f2 ~ 1
rsem.pattern

V1 ~0*1
V2 ~0*1
V4 ~0*1
V5 ~0*1'

analysis<-rsem.lavaan(mardiamv25, fa.model, c(1,2,4,5))

rsem.pattern Obtaining missing data patterns

Description
This function obtains the missing data patterns and the number of cases in each patterns. It also tells the number of observed variables and their indices for each pattern.

Usage
rsem.pattern(x, print=FALSE)

Arguments
x A matrix as data
print Whether to print the missing data pattern. The default is FALSE.

Details
The missing data pattern matrix has 2+p columns. The first column is the number cases in that pattern. The second column is the number of observed variables. The last p columns are a matrix with 1 denoting observed data and 0 denoting missing data.

Value
x Data ordered according to missing data pattern
misinfo Missing data pattern matrix
mispat Missing data pattern in better readable form.

Author(s)
Ke-Hai Yuan and Zhiyong Zhang

References
Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
Examples

```r
#set<-read.table('MardiaMV25.dat.txt', na.string='99')
#set<-data.matrix(dset)
#n<-dim(dset)[1]
#p<-dim(dset)[2]
#miss_pattern<-rsem.pattern(n,p,dset)
#miss_pattern
```

rsem.print

Organize the output for Lavaan with robust s.e. and test statistics

Description

Organize the output for Lavaan with robust s.e. and test statistics. Modified from the print function of Lavaan.

Usage

```r
rsem.print(object, robust.se, robust.fit, estimates=TRUE, fit.measures=FALSE, standardized=FALSE, rsquare=FALSE, std.nox=FALSE, modindices=FALSE)
```

Arguments

- `object`: Output from lavaan analysis, such as growth, factor, sem functions.
- `robust.se`: Robust standard error from the function rsem.se
- `robust.fit`: Robust fit statistics from the function rsem.fit
- `estimates`: Show parameter estimates
- `fit.measures`: Show fit statistics of lavaan (no need for it)
- `standardized`: standardized coefficients
- `rsquare`: R square for dependent variables.
- `std.nox`: to add
- `modindices`: Modification indices

Details

This function will run the robust analysis and output results.

Value

- `sem`: Information for SEM analysis including estimated means, covariance matrix and their sandwich type covariance matrix in the order of mean first and then covariance matrix.
- `misinfo`: Information related to missing data pattern
Results from expectation robust algorithm

Covariance matrix

If EQS model is supplied,

Information for SEM analysis including estimated means, covariance matrix and their sandwich type covariance matrix according to the requirement of EQS.

In addition, the following model parameters are from EQS

Fit indices and associated p-values

Parameter estimates

All information from REQS

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

See Also

rsem.pattern, rsem.emmusig, rsem.Ascov

Examples

```r
# dontrun(
# an example
data(mardiamv25)
names(mardiamv25)<-paste('V', 1:5, sep='')

fa.model<- 'f1 =~ V1 + V2
          f2 =~ V4 + V5
          f1 ~ 1
          f2 ~ 1
          V1 ~0*1
          V2 ~0*1
          V4 ~0*1
          V5 ~0*1'

pat<-rsem.pattern(mardiamv25)

phi<-0.1
musig<-rsem.emmusig(pat, varphi=phi)

res.lavaan<-sem(fa.model, sample.cov=musig$sigma, sample.mean=musig$mu, sample.nobs=88, mimic='EQS')

ascov<-rsem.Ascov(pat, musig, varphi=phi)
```
rsem.se

robust.se <- rsem.se(res.lavaan, ascov$Gamma)
robust.fit <- rsem.fit(res.lavaan, ascov$Gamma, musig)
rsem.print(res.lavaan, robust.se, robust.fit)

rsem.se

Calculate robust standard errors

Description

Calculate robust standard errors

Usage

rsem.se(object, gamma)

Arguments

- **object**: Output from lavaan analysis, such as growth, factor, sem functions.
- **gamma**: Robust covariance matrix for saturated mean and covariances

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

Examples

x <- array(1:6, c(2,3))
rsem.vec(x)
rsem.ssq
Calculate the squared sum of a matrix

Description
Calculate the squared sum of a matrix

Usage
```r
rsem.ssq(x)
```

Arguments
- `x`
 A matrix

Author(s)
Ke-Hai Yuan and Zhiyong Zhang

References
Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

Examples
```r
x<-array(1:6, c(2,3))
rsem.ssq(x)
```

rsem.switch
swith function

Description
swith function

Usage
```r
rsem.switch(p)
```

Arguments
- `p`
 number of variables
rsem.switch.gamma Internal function

Description
Internal function

Usage
rsem.switch.gamma(gamma, ov.names)

Arguments
- gamma: Robust covariance matrix for saturated mean and covariances
- ov.names: Observed variable names.

Author(s)
Ke-Hai Yuan and Zhiyong Zhang

References
Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

rsem.vec Stacking a matrix to a vector

Description
Stacking a matrix to a vector

Usage
rsem.vec(x)

Arguments
- x: A matrix

Author(s)
Ke-Hai Yuan and Zhiyong Zhang
References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

Examples

\[
\begin{align*}
&x<-array(1:6, c(2,3)) \\
&rsem.vec(x)
\end{align*}
\]

rsem.vec
Stacking lower triangle of a matrix to a vector

Description

Stacking lower triangle of a matrix to a vector

Usage

\[
\text{rsem.vec}(x)
\]

Arguments

\[
\begin{align*}
&x \quad \text{A matrix}
\end{align*}
\]

Author(s)

Ke-Hai Yuan and Zhiyong Zhang

References

Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

Examples

\[
\begin{align*}
&x<-array(1:9, c(3,3)) \\
&rsem.vec(x)
\end{align*}
\]
rsem.weight

Calculate weight for each subject

Description

Calculate weight for each subject in estimating the mean and covariance matrix.

Usage

```rsem.weight(x, varphi, mu0, sig0)```

**Arguments**

- `x`: Data
- `varphi`: Downweight rate.
- `mu0`: Robust mean
- `sig0`: Robust covariance matrix.

**Value**

- `w1`: Weight for robust mean estimates
- `w2`: Weight for robust covariance estimates

**Author(s)**

Zhiyong Zhang and Ke-Hai Yuan

**References**


--------------------------------------

semdiag.combinations

*Enumerate the Combinations of the Elements of a Vector*

**Description**

Enumerate the Combinations of the Elements of a Vector

**Usage**

```semdiag.combinations(n, r)```

Arguments

- `n`: Size of the source vector
- `r`: Size of the target vectors
Import of EQS outputs into R

Description

This function reads EQS output files (.ets, .CBK and .ETP) into R and stores the results as objects.

Usage

```r
semdiag.read.eqs(file)
```

Arguments

- `file` The name (string) of the .ets file or the full path which the data are to be read from. If it does not contain an absolute path, the file name is relative to the current working directory, `getwd()`. A .CBK and .ETP file have to be of the same name and in the same directory.

Details

The value list below provides objects for the full EQS output. If in EQS some objects are not computed, the corresponding values in R are NA.

Value

Returns a list with the following objects:

- `model.info` General model information
- `pval` p-values for various test statistics
- `fit.indices` Various fit indices
- `model.desc` Descriptive measures
- `Phi` Phi matrix
- `Gamma` Gamma matrix
- `Beta` Beta matrix
- `par.table` Parameter table (with standard errors)
- `sample.cov` Sample covariance matrix
- `sigma.hat` Model covariance matrix
- `inv.infmat` Inverse information matrix
- `rinv.infmat` Robust inverse information matrix
- `cinv.infmat` Corrected inverse information matrix
- `derivatives` First derivatives
- `moment4` Matrix with 4th moments
- `ssolution` Standardized elements
semdiag.run.eqs

R-squared measures
- fac.means: Factor means
- var.desc: Descriptive measures for the variables (univariate statistics)
- indstd: Independent variable standardization vector
- depstd: Dependent variable standardization vector

Author(s)

Patrick Mair, Eric Wu

References

See Also

`semdiag.call.eqs, semdiag.run.eqs`

Description

Calls an EQS script file from R, executes EQS, and imports the results into R. Basically it is a wrapper function of `call.eqs` and the subsequent `read.eqs`.

Usage

```r
semdiag.run.eqs(EQSpgm, EQSmodel, serial, Rmatrix = NA, datname = NA, LEN = 2000000)
semdiag.call.eqs(EQSpgm, EQSmodel, serial, Rmatrix = NA, datname = NA, LEN = 2000000)
```

Arguments

- **EQSpgm**: String containing path where EQS is located (see details)
- **EQSmodel**: String containing path where .eqs script file is located (see details)
- **serial**: EQS serial number as integer value
- **Rmatrix**: Optional matrix argument if data or covariances are stored in R
- **datname**: If data is specified, a filename (string) must be provided for saving the data in text format (blank separated; see details)
- **LEN**: Integer containing number of working array units. By default, it is 2000000 8 bytes units
Details

If the path in EQSpgm and EQSmodel contains a blank, single quotes and double quotes are required in argument. See EQSpgm argument in examples. The last statement in the EQSpgm argument refers to the name of the executable program file. Under Windows it is ".\WINEQS" (referring to WINEQS.exe), under Mac ".\MACEQS" and under Linux ".\EQS". When specifying the path, use slash instead of backslash.

The .ETS, .CBK and .ETP files are written in the directory where the .eqs file is located. Note that these 3 files must be in the same directory than the .eqs file.

The argument datname must match with the input data specified in the corresponding .eqs file. This option can be used for simulations: Generate data in R, run .eqs() on with the corresponding data argument, pick out the relevant return values.

The value list below provides objects for the full EQS output. If in EQS some objects are not computed, the corresponding values in R are NA.

Value

Returns a list with the following objects:

- **success**: TRUE if estimation was successful, FALSE otherwise
- **model.info**: General model information
- **pval**: p-values for various test statistics
- **fit.indices**: Various fit indices
- **model.desc**: Descriptive measures
- **Phi**: Phi matrix
- **Gamma**: Gamma matrix
- **Beta**: Beta matrix
- **par.table**: Parameter table (with standard errors)
- **sample.cov**: Sample covariance matrix
- **sigma.hat**: Model covariance matrix
- **inv.infmt**: Inverse information matrix
- **rinv.infmt**: Robust inverse information matrix
- **cinv.infmt**: Corrected inverse information matrix
- **derivatives**: First derivatives
- **moment4**: Matrix with 4th moments
- **ssolution**: Standardized elements
- **Rsquared**: R-squared measures
- **fac.means**: Factor means
- **var.desc**: Descriptive measures for the variables (univariate statistics)
- **indstd**: Independent variable standardization vector
- **depstd**: Dependent variable standardization vector
Author(s)
 Patrick Mair, Eric Wu

References

See Also
 semdiag.read.eqs, semdiag.call.eqs
Index

mardiamv25, 3
mardiamv25_contaminated(mardiamv25), 3

rsem, 3
rsem-package, 2
rsem.Ascov, 4, 5, 11, 14
rsem.DP, 6
rsem.emmusig, 4, 5, 7, 7, 11, 14
rsem.fit, 8
rsem.gname, 9
rsem.index, 9
rsem.indexv, 10
rsem.indexvc, 10
rsem.lavaan, 11
rsem.pattern, 4, 11, 12, 14
rsem.print, 13
rsem.se, 15
rsem.ssq, 16
rsem.switch, 16
rsem.switch.gamma, 17
rsem.vec, 17
rsem.vech, 18
rsem.weight, 19

semdiag.call.eqs, 21, 23
semdiag.call.eqs(semdiag.run.eqs), 21
semdiag.combinations, 19
semdiag.read.eqs, 20, 23
semdiag.run.eqs, 21, 21