Package ‘rv’

April 26, 2017

Title Simulation-Based Random Variable Objects
Version 2.3.2
Date 2017-04-26
Author Jouni Kerman <jouni@kerman.com>
Maintainer Jouni Kerman <jouni@kerman.com>
Description Implements simulation-based random variable class and a suite of methods.
Depends R(>= 2.15.1), stats, utils, grDevices, graphics, parallel
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-26 20:02:36 UTC

R topics documented:

rv-package .. 3
abline.rv .. 4
aperm.rv .. 5
apply.rv .. 6
as.double.rv .. 7
as.integer.rv .. 8
as.list.rv .. 9
as.logical.rv ... 10
as.rv.bugs .. 11
as.rv.stanfit ... 12
as.vector.rv ... 12
constant .. 13
cbind.rv .. 14
detachrv .. 15
Extract.rv .. 16
Extremes-rv .. 17
fuzzy ... 18
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>hist.rv</td>
<td>20</td>
</tr>
<tr>
<td>is.na.rv</td>
<td>21</td>
</tr>
<tr>
<td>ivplot</td>
<td>22</td>
</tr>
<tr>
<td>lines.rv</td>
<td>24</td>
</tr>
<tr>
<td>Math.rv</td>
<td>25</td>
</tr>
<tr>
<td>matmult.rv</td>
<td>26</td>
</tr>
<tr>
<td>mean.rv</td>
<td>27</td>
</tr>
<tr>
<td>median.rv</td>
<td>28</td>
</tr>
<tr>
<td>mlplot</td>
<td>29</td>
</tr>
<tr>
<td>numeric.rv</td>
<td>31</td>
</tr>
<tr>
<td>outer.rv</td>
<td>32</td>
</tr>
<tr>
<td>plot.rv</td>
<td>33</td>
</tr>
<tr>
<td>points.rv</td>
<td>34</td>
</tr>
<tr>
<td>posterior</td>
<td>36</td>
</tr>
<tr>
<td>postsim</td>
<td>37</td>
</tr>
<tr>
<td>print.rv</td>
<td>38</td>
</tr>
<tr>
<td>quantile.rv</td>
<td>39</td>
</tr>
<tr>
<td>range.rv</td>
<td>40</td>
</tr>
<tr>
<td>rep.rv</td>
<td>41</td>
</tr>
<tr>
<td>rv</td>
<td>42</td>
</tr>
<tr>
<td>rarray</td>
<td>43</td>
</tr>
<tr>
<td>rvattr</td>
<td>44</td>
</tr>
<tr>
<td>rvbern</td>
<td>45</td>
</tr>
<tr>
<td>rvbeta</td>
<td>46</td>
</tr>
<tr>
<td>rbindom</td>
<td>47</td>
</tr>
<tr>
<td>rvboot</td>
<td>48</td>
</tr>
<tr>
<td>rvcauchy</td>
<td>49</td>
</tr>
<tr>
<td>rvchisq</td>
<td>50</td>
</tr>
<tr>
<td>rvci</td>
<td>51</td>
</tr>
<tr>
<td>rvconst</td>
<td>52</td>
</tr>
<tr>
<td>rvcov</td>
<td>53</td>
</tr>
<tr>
<td>rvcut</td>
<td>54</td>
</tr>
<tr>
<td>rvdens</td>
<td>55</td>
</tr>
<tr>
<td>rvdirichlet</td>
<td>56</td>
</tr>
<tr>
<td>rvdiscrete</td>
<td>57</td>
</tr>
<tr>
<td>rveempirical</td>
<td>58</td>
</tr>
<tr>
<td>rvexp</td>
<td>59</td>
</tr>
<tr>
<td>rvfactor</td>
<td>60</td>
</tr>
<tr>
<td>rvgamma</td>
<td>60</td>
</tr>
<tr>
<td>rvhist</td>
<td>62</td>
</tr>
<tr>
<td>rvifelse</td>
<td>63</td>
</tr>
<tr>
<td>rvinvchisq</td>
<td>63</td>
</tr>
<tr>
<td>rvmaply</td>
<td>64</td>
</tr>
<tr>
<td>rvmatch</td>
<td>65</td>
</tr>
<tr>
<td>rvmean</td>
<td>66</td>
</tr>
<tr>
<td>rvmeanunif</td>
<td>67</td>
</tr>
<tr>
<td>rvmultinom</td>
<td>69</td>
</tr>
</tbody>
</table>
rv-package

Simulation-based Random Variable Objects

Description

'rv' implements a simulation-based random variable object class.

Please refer to the vignette: vignette("rv") for details.

Details

Package: rv
Version: 2.3.0
Date: 2013-05-18
Namespace: rv
Depends: R(>= 2.10.0), methods, utils, grDevices, graphics
License: GPL-2
Description

`abline.rv`, with random arguments (i.e. arguments of which at least one is an `rv` object), plots a sample of lines corresponding to simulations of `rv` object `x`. If the arguments are all numeric (none is an `rv` object), the function call is passed on to `abline`.

Usage

```r
abline.rv (a = NULL, b = NULL, h = NULL, v = NULL, ...)
```

Arguments

- `a`: intercept
- `b`: slope
- `h`: y-value(s) horizontal line(s)
- `v`: x-value(s) horizontal line(s)
- `...`: further arguments passed to `abline`

Details

This is a version of `abline` that accepts random variable objects for the arguments `a`, `b`, `h`, or `v`. The number of lines is determined by `rvpar("line.sample")`, default 20.

See the original help page in package 'graphics.'

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
aperm.rv

Examples

```r
## Not run:
demo("rvexample1")
## End(Not run)
```

aperm.rv Random Array Transposition

Description

Transpose a random array by permuting its dimensions and optionally resizing it.

Usage

```r
## S3 method for class 'rv'
aperm(a, perm, ...)
```

Arguments

- `a` the random matrix to be transposed
- `perm` the subscript permutation vector. See the manual page for the generic method `aperm`.
- `...` further arguments passed to `aperm`

Details

This is the `rv`-compatible version of the function `aperm`. It first applies...

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

aperm

Examples

```r
x <- rvarray(rvnorm(24), dim=c(2,3,4))
print(aperm(x))
```
apply.rv

Apply Functions over Margins of Random Arrays

Description

The *rv*-compatible version of *apply*

Usage

```r
apply.rv(X, MARGIN, FUN, ...)
```

Arguments

- **X**: a random array
- **MARGIN**: subscripts.
- **FUN**: function.
- **...**: optional arguments to **FUN**.

Details

This is the *rv*-compatible version of the function `apply`.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

`apply`

Examples

```r
## Not run:
x <- rvmatrix(rvnorm(12), nrow=3, ncol=4)
print(apply.rv(x, 1, sum))

## End(Not run)
```
as.double.rv

Coercing Random Vectors to Real-valued

Description

Coerces random vector objects into double-valued ones.

Usage

```r
## S3 method for class 'rv'
as.double(x, ...)
```

Arguments

- `x` an rv object
- `...` other arguments

Details

`as.double` coerces an rv object into double-valued one. In effect, the function `as.double` is applied to all simulations.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
x <- as.logical(rvbern(prob=0.5))
print(x)
print(as.double(x))
```
as.integer.rv

Integer Random vectors

Description
Coerces a random variable to an integer-valued (discrete) one

Usage
S3 method for class 'rv'

as.integer(x, ...)

Arguments

x an rv object

... Further arguments passed on

Details
In effect, the function as.integer is applied to all simulations.

Note

is.integer(x) returns TRUE if and only if each component of x is integer-valued (each simulation vector is of type 'integer').

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

as.logical.rv.

Examples

x <- rpois(lambda=3) # some integer-valued random variable
print(x)
is.integer(x) # FALSE, because by default x is 'double'!
x <- as.integer(x) # coerce to integer
is.integer(x) # TRUE
print(x) # Shows also the 'min' and 'max' columns
as.list.rv

Coerce a random vector object to a list

Description

as.list.rv coerces a given rv object into a list.

Usage

S3 method for class 'rv'
as.list(x, ...)

Arguments

x an rv object

... arguments passed on to other methods

Details

Each component of the argument is extracted into a component of an enclosing list, which is returned.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

x <- rnorm(10)
L <- as.list(x)
as.logical.rv
Logical Random vectors

Description
Coerces a random variable to a logical-valued one (Bernoulli r.v.)

Usage
```r
## S3 method for class 'rv'
as.logical(x, ...)
```

Arguments
- `x`: an rv object
- `...`: Further arguments passed on

Details
In effect, the function `as.logical` is applied to all simulations.

Note
`is.logical(x)` returns TRUE if and only if each component of `x` is logical-valued (i.e. TRUE/FALSE).

Author(s)
Jouni Kerman <jouni@kerman.com>

References
See also vignette("rv").

Examples
```r
x <- rvbern(prob=0.5)  # some 0/1 valued random variable
print(x)
is.logical(x)         # FALSE, because by default x is 'double'
x <- as.logical(x)     # coerce to logical; all zeros become FALSE, ones become TRUE
is.logical(x)          # TRUE
print(x)               # Shows the expectations and not the quantiles
```
as.rv.bugs

Description

as.rv.bugs coerces an R2WinBUGS object to a list of rv objects or to a named rv object (vector).

as.rvsummary.bugs works similarly but coerces the resulting rv objects into rvsummary objects.

Usage

```r
## S3 method for class 'bugs'
as.rv(x, list.=TRUE, ...)
## S3 method for class 'bugs'
as.rvsummary(x, list.=TRUE, ...)
```

Arguments

- `x` a bugs (R2WinBUGS) object
- `list.` logical; return a list of rv objects instead of a single rv object (vector)?
- `...` (ignored)

Value

If `list.=TRUE`, a named list of random vectors or a named random vector, otherwise a random vector. (Usually one would prefer a list.)

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
as.rv.stanfit
Convert simulations generated by Stan to a list of rv objects

Description
Convert simulations generated by Stan to a list of rv objects.

Usage
S3 method for class 'stanfit'
as.rv(x, list.=TRUE, ...)

Arguments
- x: A 'stanfit' object
- list.: logical; return a list of rv objects instead of a single rv object (vector)?
- ...: (ignored)

Value
A list of rv objects, with the names set for each rv object.

Author(s)
J Kerman

References
Stan: http://mc-stan.org/

as.vector.rv
Coerce an rv object

Description
as.vector.rv coerces a given rv object into a vector; matrices lose their dimension attributes, but
rv objects stay as rv objects (since they are considered to be “vectors”).

Usage
S3 method for class 'rv'
as.vector(x, mode="any")
Arguments

x an object
mode (currently not used)

Details

as.vector.rv removes the dimension attribute and returns the rv object. Needed for compatibility with code that uses as.vector.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

x <- rvmatrix(rvnorm(10), 2, 5)
as.vector(x)

c

Concatenation of random vectors

Description

Concatenates random vectors.

Usage

S3 method for class 'rv'
c(..., recursive = FALSE)

S3 method for class 'rvsummary'
c(..., recursive = FALSE)
c(..., recursive = FALSE)

Arguments

... objects to be concatenated. Can be a mixture of constants and rv objects.

recursive logical. If recursive = TRUE, the function recursively descends through lists (and pairlists) combining all their elements into a vector.
cbind.rv

Combine random vectors by columns or rows

Description

Combines random vectors by columns (cbind.rv) or rows (rbind.rv).

Usage

```r
cbind.rv(..., deparse.level = 1)
rbind.rv(..., deparse.level = 1)
```

Arguments

- `...`: vectors or matrices, can be rv objects
- `deparse.level`: (passed on to cbind)

Details

See `cbind` and `rbind` for details.
Author(s)
Jouni Kerman <jouni@kerman.com>

References
See also vignette("rv").

Examples
```r
x <- rnorm(10)
y <- rnorm(10)
cbind.rv(x, y)
rbind.rv(x, y)
```

Description
Functions to coerce or test for non-random objects.

Usage
```r
is.constant(x)
as.constant(x)
## S3 method for class 'rv'
as.constant(x)
## S3 method for class 'rvsummary'
as.constant(x)
```

Arguments

- `x`: an object, random variable (rv) or not

Details
`is.constant` returns TRUE for each component of the argument object if there is only one simulation (that is, the variable is “constant”).

Note: `rv` objects that merely have variance zero are not therefore necessarily “true” constants.

`as.constant` coerces `rv` or `rvsummary` objects into constant strings; NA is returned for component that is not random.

Author(s)
Jouni Kerman <jouni@kerman.com>
References

See also vignette("rv").

Examples

```r
is.constant(1)          # TRUE
is.constant(as.rv(1))   # TRUE
setnsims(200)
x <- rvbern(prob=0.001)
all(sims(x)==0)         # most probably true
is.constant(x)          # always FALSE
x <- rvnorm(3)
x[1] <- 1
as.constant(x)          # 1, NA, NA
all(is.random(x) & is.na(as.constant(x))) # always TRUE
```

detachrv

Detach the rv package

Description

detachrv detaches the rv package and restores the original functions in base, graphics and stats packages.

Usage

detachrv()

Details

Currently equivalent to detach("package:rv").

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
Extract.rv

Examples

```r
## Not run:
library(rv)
detachrv()
## End(Not run)
```

Extract or Replace Parts of a Random Vector

Description

Bracket slice and assignment methods adapted for random vectors and arrays. The assignment function `impute<-` is compatible with both non-rv and rv objects (rv, rvsummary, and rvfactor objects). To write universal code that works both atomic and rv objects, use `impute(x, ...)<-value` instead of `x[...]<- value`.

Usage

```r
# S3 method for class 'rv'
x[... , drop = TRUE]
# S3 method for class 'rvfactor'
x[... , drop = FALSE]
# S3 method for class 'rvsummary'
x[... , drop = TRUE]
# S3 replacement method for class 'rv'
x[...]<- value
# S3 replacement method for class 'rvsummary'
x[...]<- value
impute(x, ...)<- value
```

Arguments

- `x`
 object from which to extract element(s) or in which to replace element(s).
- `...`
 indices specifying elements to extract or replace.
- `value`
 typically an array-like R object of a similar class as `x`.
- `drop`
 For matrices and arrays. If TRUE the result is coerced to the lowest possible dimension (see the examples). This only works for extracting elements, not for the replacement.

Details

NOTE. `x` will NOT be automatically coerced into an rv object.

value may be an rv object or a regular numeric object.

Extracting rv objects works the same way as extracting components of a numerical vector or array. The return value is always an object of class ‘rv’. Type ?Extract for details.

Note: the index arguments (i, j, etc.) must be constants, but this may change in the future.
Value

A random variable (an rv object).

References

See also vignette("rv").

Examples

```r
x <- rnorm(1)
y <- 1:5
## Not run:
y[2] <- x ## Will not work

## End(Not run)
impute(y, 2) <- x
```

Extremes-rv
Maxima and Minima of Random Variables

Description

Returns the maxima and minima of the components of a random vector.

Usage

```r
rvmin(x)
rvmax(x)
rvrange(x)
## S3 method for class 'rv'
min(..., na.rm=FALSE)
## S3 method for class 'rv'
max(..., na.rm=FALSE)
## S3 method for class 'rv'
pmin(..., na.rm=FALSE)
## S3 method for class 'rv'
pmax(..., na.rm=FALSE)
```

Arguments

- `x`
an rv or rvsummary object
- `na.rm`
remove missing values?
- `...`
one or more rv objects or numeric objects
Details

rvmin applies the function min to each component of the argument \(x \). Missing values are removed.

rvmax applies the function max to each component of the argument \(x \). Missing values are removed.

rvrange applies the function range to each component of the argument \(x \). Missing values are removed.

\(\text{min}.rv \) returns the minimum of the random vector, returning thus one random variable. Similarly \(\text{max}.rv \) returns the maximum of a vector.

\(\text{pmin}.rv \) and \(\text{pmax}.rv \) returns the componentwise minima or maxima of several random vectors or constants, yielding thus a random vector of the same length.

Value

A numeric vector of the same dimension as \(x \).

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

rvmedian, rvmean.

Examples

\[x \leftarrow \text{rvpois}(10, \lambda=3) \]
\[\text{rvmin}(x) \]
\[\text{rvmax}(x) \]
\[\text{rvrange}(x) \]

<table>
<thead>
<tr>
<th>fuzzy</th>
<th>Fuzziness</th>
</tr>
</thead>
</table>

Description

Tests whether an object is “fuzzy”, i.e. a logical random scalar that has probability strictly between zero and one (not strictly true nor strictly false).
Usage

```r
is.fuzzy(x)
```

Arguments

`x` an object, random or constant

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
x <- as.logical(rvbern(1, 0.4)) # a logical random variable
is.fuzzy(x) # TRUE, since x is logical and not constant
is.fuzzy(x<2) # FALSE, since x is less than 2 with probability one
is.fuzzy(rvnorm(1)) # FALSE, since it's not a probability
is.fuzzy(TRUE) # FALSE, since TRUE is strictly TRUE
is.fuzzy(1) # FALSE, since 1 is not a logical variable
```

Description

`hist.rv` shows a grid of histograms generated from random draws of the random vector argument.

Usage

```r
# S3 method for class 'rv'
hist(x, grid = c(4, 5), xlim = x.range,
main = paste(xname, "simulation"), freq=FALSE, ...)
```
is.na.rv

Arguments

x an object
grid a vector of two numbers, indicating the size of the grid to plot the histograms
xlim x limits
main main title
freq logical; if FALSE, plots as probability density, as it should.
 Other arguments passed on to hist

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

x <- rnorm(30)
hist(x)

is.na.rv Missing Data Indicators

Description

is.na.rv returns the distribution (random variable) of the indicator function of missing data. rv.all.na returns TRUE if all components of the argument vector are completely missing. rv.any.na returns TRUE if any component of the argument vector has missing values.

Usage

S3 method for class 'rv'
is.na(x)
rv.all.na(x)
rv.any.na(x)

Arguments

x an rv object
Details

Internally, \texttt{is.na.rv} applies the function \texttt{is.na} to each simulation of each component of the argument vector.

Value

\texttt{is.na.rv} returns a “Bernoulli” random vector of the same length and dimension as those of \texttt{x}.
\texttt{rv.all.na} and \texttt{rv.any.na} return TRUE or FALSE (single value).

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also \texttt{vignette("rv")}.

Examples

\begin{verbatim}
 x <- trunc(rvnorm(1))
 y <- !x==0 & NA) # TRUE if x!=0
 x <- y*x
 is.na(x) # 69%: Pr(-1<z<1)
 is.logical(is.na(x)) # TRUE
 rv.any.na(x) # TRUE
 rv.all.na(x) # FALSE
 \end{verbatim}

ivplot

Interval plot

Description

Create a plot based on a data frame providing endpoints of intervals, colors, line weights etc.

Usage

\begin{verbatim}
 ivplot(X, name = "", file.name="", split = NULL, Intervals = NULL, xlim, left.margin = 3, x.ticks = NULL, exp.labels = FALSE, xlab = "", title="", top.axis = FALSE, use_color = TRUE, vline = NULL, device = "X11", size = c(297, 210)/25.4/2, font.family = "Courier", cex.label=NULL, ...)\end{verbatim}
Arguments

- **x**: A data frame providing data for creating one interval per row. See details below.
- **name**: Name of file to produce
- **file.name**: Name of file to produce
- **split**: Name of column by which to divide the plot into groups.
- **Intervals**: A list defining what intervals or dots to output per each row.
- **xlim**: Numeric vector of length 2. Limits for the horizontal axis.
- **left.margin**: Scalar. Size of left margin. If labels take too much space, increase this (default is 3)
- **x.ticks**: Numeric vector.
- **exp.labels**: Logical. Use log scale? Then print numeric values at x-ticks in the original (exponentiated) scale
- **xlab**: Character.
- **title**: Character; title.
- **top.axis**: Logical. Print top axis?
- **use_color**: Logical. Use color in plot or black?
- **vline**: Scalar. Plot vertical line (will be plotted before intervals are
- **device**: Character. To which device to output?
- **size**: Numeric vector of length 2. Size of plot: vertical and horizontal sizes in inches.
- **font.family**: Character. Font family (sans (Helvetica), serif (Times), mono (Courier), ...)
- **cex.label**: number, a factor to shrink the `cex` of the labels, between 0 and 1
- **...**: Other arguments passed to `plot`

Details

...

Value

The file name that was output; as a side effect a plot (a pdf file if `device="pdf"`).

Author(s)

J Kerman
Add Connected (Random) Line Segments to a Plot

Description

Adds a sample of line segments randomly drawn from the joint distribution of \((x, y)\).

Usage

```r
## S3 method for class 'rv'
lines(x, y, type="l", ...) 
```

Arguments

- `x, y`: coordinate vectors of points to join
- `type`: character indicating the type of plotting, currently 'l' and 'p' are the only possibilities
- `...`: further arguments passed to `points`

Details

The size of the sample (number of segments drawn) is determined by \(\text{rvpar(line.sample)}\).

`lines.rv` is implemented as part of `points.rv`.

See `points.rv` for details of the parameters.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
x <- as.rv(1:10)
y <- rnorm(mean=x)
par(mfrow=c(2,2))
plot(x, y, type="b", main="Intervals and random lines", lrcol="blue", col="gray")
plot(x, y, type="l", main="Only random lines", col="gray")
plot(x, E(y), type="b", main="Means, connected by a constant line", col="gray")
plot(x, rvmedian(y), type="b", pch=19, main="Median & middle 95 pc CI band", col="darkgray")
lines(rvquantile(y, 0.025), col="gray")
lines(rvquantile(y, 1-0.025), col="gray")
```
Mathematical functions and operators adapted to work with random variable (rv) objects.

Usage

```r
## S3 method for class 'rv'
Math(x, ...)
```

```r
## S3 method for class 'rv'
Ops(e1, e2)
```

Arguments

- `x` object
- `e1` object
- `e2` object
- `...` further arguments passed to or from other methods

Details

The operator method preserves the names of the longer vector (or those of the first if the lengths match).

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
x <- rnorm(10)
-x
names(x) <- paste("x[", seq_along(x), "]", sep="")
x + 1:10
1:2 + x
cumsum(x)
cumprod(exp(x))
```
Description

Multiplies two random matrices, if they are conformable. If one argument is a vector, it will be coerced to either a row or column matrix to make the two arguments conformable. If both are vectors it will return the inner product.

Usage

```r
## S3 method for class 'rv'

x %*% y
x %**% y
```

Arguments

- `x`, `y` numeric or complex matrices or vectors.

Details

Optimized internally for the case of random matrix multiplied by a constant column vector.

Value

The (distribution of the) matrix product. Use `drop` to get rid of dimensions which have only one level.

References

See also vignette("rv").

See Also

`matrix`, `Ops`, `diag`.

Examples

```r
x <- 1:4
(z <- x %*% x)  # scalar ("inner") product (1 x 1 matrix)
drop(z)  # as scalar

y <- diag(x)
z <- matrix(1:12, ncol = 3, nrow = 4)
y %*% z
y %**% x
x %**% z
```
Description

`mean.rv` computes the distribution of the arithmetic average of its argument `rv` object.

Usage

```r
## S3 method for class 'rv'
mean(x, ...)
```

Arguments

- `x`: an object
- `...`: further arguments passed to or from other methods

Details

`mean` gives the distribution (that is, a random variable object) of the statistic $\frac{1}{n} \sum_{i=1}^{n} x_i (\text{sum}(x)/\text{length}(x))$.

In particular, `mean(x)` of a random vector `x` of length one is equal to `x` as it would be in the case of numerical `x`.

To find the expectation of a random vector `x` (that is, the individual means of random components in a vector), use `rvmean(x)` (same as $E(x)$ and $\text{Pr}(x)$).

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

`rvmean`

Examples

```r
y <- rnorm(10, mean=0, sd=1)
m1 <- mean(y)
m2 <- rnorm(1, mean=0, sd=1/sqrt(10))
print(c(m1, m2)) # should have the same distribution
```
median.rv

Distribution of the Sample Median

Description

Compute the distribution sample median of the vector of values given as its argument.

Usage

```r
## S3 method for class 'rv'
median(x, na.rm = FALSE, ...)
```

Arguments

- `x` a random vector containing the components whose distribution of the median value is to be computed.
- `na.rm` a logical value indicating whether NA values should be stripped before the computation proceeds.
- `...` further arguments passed to `median`

References

See also `vignette("rv")`.

See Also

- `rvmedian` for the componentwise medians. `quantile` for general quantiles.

Examples

```r
x <- rnorm(10)  ## A random vector of length 10.
median(x)       ## A random scalar (vector of length 1).
rvmedian(x)     ## A numeric vector of length 10.
```
mlplot

Horizontal interval plot of components of a random vector

Description

mlplot plots the scalar components as of the given random array or vector as horizontal intervals, grouped by row.

Usage

```r
mlplot(x, ...)  
## S3 method for class 'rvsummary'

## Default S3 method:
mlplot(x, y.center = TRUE, y.shift = 0, y.map = NULL, mar =
par("mar"), left.margin = 3, vline = NULL, top.axis = TRUE,
exp.labels = FALSE, x.ticks = NULL, axes = NULL, xlim =
NULL, ylim = NULL, xlab = deparse(substitute(X)), ylab = NULL,
las = NULL, add = FALSE, ...)
```

Arguments

- `x`
a random array or vector
- `y.center`
center the intervals nicely at each y-coordinate?
- `y.shift`
add this amount to each y coordinate of an interval
- `y.map`
optional function to compute the y-coordinates, given X
- `mar`
the margins of the plot
- `left.margin`
offset to add to the left margin of the plot (to add space for the labels)
- `vline`
if numeric, plot vertical lines at these (horizontal) coordinates
- `top.axis`
(logical) plot the top axis?
- `exp.labels`
(logical) if the original scale is logarithmic, label ticks in original (exp) scale?
- `x.ticks`
positions for the ticks of the x-axis
- `axes`
(logical) plot the axes at all?
- `xlim`
x limits
- `ylim`
y limits
- `las`
the style of axis labels, see `par`
- `add`
(logical) add the intervals to an existing plot?
- `xlab`
x label
- `ylab`
not used (instead of labels, the row names are shown)
- `...`
further arguments passed to plot and points
Details

`mlplot` plots the scalar components of a vector or an array (2 or 3-dimensional) vertically (up to down) so that a component of a vector or a row of a matrix is plotted at vertical points 1...nrow(x).

An ‘mlplot’ of a vector implements a “forest plot.”

Scalars on the same row are plotted closely together. The positioning of the scalars within a row are controlled by the arguments `y.center`, `y.shift`, `y.map`. These do not need to be set for the default plot; if two arrays or vectors are plotted over on top of each other (using `add=TRUE`) then you should probably change `y.shift` which controls the vertical position of the array elements.

See `demo(mlplot)` for a detailed

to change the color of the random components of the vector, use `rvcol`. Typically this is of the same length as `x`, giving the color ‘theme’ for each component.

If `X` is a 3-dimensional array, `mlplot` is called repeatedly for each 2-dimensional array `X[, , k]` for each `k`.

`X` may also be a fixed numeric object.
`NAs` (or random scalars with 100% NA) are not plotted.

`mlplot` is still experimental.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
# Not run:
# You can run this complete example by typing demo("mlplot")

n.rows <- 4; n.cols <- 5; n <- (n.rows*n.cols)
# Draw some fixed numbers
mu.true <- rnorm(1:n.rows, mean=1:n.rows, sd=1)
sigma.true <- 1
theta <- rvmatrix(rvnorm(n=n.cols, mean=mu.true, sd=sigma.true), nrow=n.rows)
#
col.labels <- paste("Time", 1:n.cols, sep=" ")
row.labels <- paste("Unit", 1:n.rows, sep=" ")
dimnames(theta) <- list(row.labels, col.labels)
#
par(mfrow=c(2,2))
mlplot(theta, main="theta")
abline(v=0, lty="dotted")
mlplot(t(theta), main="theta transposed")
```
numeric.rv

abline(v=0, lty="dotted")
row.sd <- apply.rv(theta, 1, sd.rv)
col.sd <- apply.rv(theta, 2, sd.rv)
x.max <- max(rvquantile(c(row.sd, col.sd), 0.99))
mlplot(row.sd, xlim=c(0, x.max), main="theta: within-row sd for each unit")
abline(v=0)
mlplot(col.sd, xlim=c(0, x.max), main="theta: between-row sd for each time point")
abline(v=0)

End(Not run)

numeric.rv | Numeric Random Vectors

Description

Creates or coerces rv objects of type "numeric".

Usage

```r
## S3 method for class 'rv'
is.numeric(x)
## S3 method for class 'rv'
as.numeric(x, ...)
## S3 method for class 'rvfactor'
is.numeric(x)
## S3 method for class 'rvfactor'
as.numeric(x, ...)
```

Arguments

- `x` an rv object to be coerced or tested.
- `...` further arguments passed to or from other methods.

Details

- `is.numeric(x)` returns TRUE if and only if each component of `x` is numeric-valued.
- `as.numeric.rv` coerces an rv object into numeric-valued one. In effect, the function `as.numeric` is applied to all simulations.

Random factors are not numeric (just as non-random factors aren’t).

Author(s)

Jouni Kerman <jouni@kerman.com>
References

See also vignette("rv").

See Also
numeric.

Examples

```r
x <- as.logical(rvbern(1,.5)) # Bernoulli rv
is.numeric(x) # FALSE
x <- as.numeric(x) # coerce to numeric; all TRUEs become ones, FALSEs zeros
is.numeric(x) # TRUE
```

outer.rv

Outer Product of Random Arrays

Description

outer.rv

Usage

```r
outer.rv(X, Y=NULL, FUN="*", ...)
```

Arguments

- **X**: First argument for function FUN
- **Y**: Second argument for function FUN; if missing, X is used instead
- **FUN**: a function to use on the outer products; a character string or a function
- **...**: optional arguments to be passed to FUN

Details

Implements the outer product for random arrays.

Note. outer is not a generic function; thus outer(x) will not work if x is an rv object. You must write outer.rv(x) explicitly.

See the function outer for further details.

Value

A random array.
Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
#
```

plot.rv Plotting Scatterplots of Random Variable Objects

Description

Draw a "random scatter plot" or random points as horizontal or vertical intervals.

Usage

```r
## S3 method for class 'rv'
plot(x, y, ...)
## S3 method for class 'rvsummary'
plot(x, y, ...)
```

Arguments

- `x` an `rv` object
- `y` random or fixed vector
- `...` other arguments passed on to `plot`

Details

If a component `x` is fixed and the corresponding component of `y` is random, the resulting ‘point’ is a vertical uncertainty (‘credible’) interval. NOTE. You must call `plot.rv` explicitly to obtain this behavior.

If a component `y` is fixed and the corresponding component of `x` is random, the resulting ‘point’ is a horizontal uncertainty (‘credible’) interval.

If a component of `x` and the corresponding component of `y` is random, the resulting ‘point’ is a scatterplot of simulations from the joint distribution of `code(x,y)`.

Compatible with objects of class ‘rvsummary’.
Add Points and Intervals to a Plot

Points and Intervals to a Plot

Draw a sequence of points or uncertainty intervals at specified (fixed) x-coordinates.

Usage

```r
define the function
```

Arguments

- `x`: x-coordinates
- `y`: y-coordinates
- `type`: character indicating the type of plotting
- `rvcol`: colors for the intervals
points.rv

xlim x-limits (optional)
ylim y-limits (optional)
rvlwd line width of the thin interval
rvpoint character vector of length 3, indicating intervals (points) to print
rvlex factor to multiply rvlwd with, to get the thicker interval
... further arguments passed to points

Details

Each 'point' with a fixed coordinate and a random coordinate is plotted as an interval. If "lines" are plotted (type="l" or type="b"), the result is a random draw of lines connecting the coordinates. See lines.rv for details on how to set the sample size of the random draw.

Each interval consists of a maximum of three components. (1) a dot (2) thick interval (3) thin interval. Typically the dot marks the mean or the median; the thin and the thick intervals show a shorter and a longer middle uncertainty interval. The appearance of these intervals can be controlled using the parameters rvlwd, rvpoint, rvcol, and rvlex.

rvlwd sets the line width of the thin interval; rvlex sets the factor to multiply rvlwd to get the line width of the thicker interval.

points attempts to color the intervals and the dot using the color given as rvcol. The basic name of the color should be given, e.g. "red" or "blue". The thin line is colored using the basic color, the thick line is colored using a darker hue (numbered '2', e.g. "red2") and the dot is colored using the darkest hue (numbered '3', e.g. "red3"). That is, for example, if rvcol='red', the color scheme generated for the dot, the thick line, and the thin line, respectively, are c('red3', 'red2', 'red').

Special color themes: the default rvcol color scheme is called "default" and yields the color scheme c("grey20", "grey40", "grey60"). Other special color themes: "grey", "lightgrey", "darkgrey". (The spellings 'gray' and 'grey' are interchangeable).

The parameter rvpoint is a character vector of length 3, with the first component indicating what to plot as a dot (possible values: "mean", "median"), the second component indicating what to plot as a "thick interval" (possible values: "n" the second component indicating what to plot as a "thin interval". Default: c("mean", "50%", "95%"). If you wish only to plot the mean and the 95% interval, use rvpoint=c("mean", NA, "95"). If you wish to plot the median and the 95% interval, use rvpoint=c("median", NA, "95").

The color col is used for plotting fully fixed dots (both x and y coordinates fixed) and lines (fixed and random lines – see lines.rv).

NOTE. This parameterization is yet experimental, and may change.

It is possible to have both x and y random, but this code is not yet fully functional.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
Examples

```r
x <- as.rv(1:10)
y <- rvnorm(mean=x)
par(mfrow=c(2,2))
plot(x, y, main="Fixed x-coordinate")
plot(y, x, main="Fixed y-coordinate")
plot(x, y, lwd=4, rvcol="red", main="Color and line width changed")
plot(x, y, type="b", main="Intervals and random lines", rvcol="blue", col="gray")
## Not run:
# Don't use the rv-only parameters when plotting fixed vectors.
plot(x, E(y), rvcol="blue", col="gray")
plot(x, E(y), rvcol="blue", col="gray")
## End(Not run)
```

posterior

Generate Posterior Simulations

Description

Generate posterior simulations for a given fitted linear or general linear model, assuming the standard "noninformative" priors on the unknowns.

Usage

```r
posterior(obj, ...)  
## S3 method for class 'lm'
posterior(obj, ...)  
## S3 method for class 'glm'
posterior(obj, ...)  
```

Arguments

- `obj` an object
- `...` further arguments

Value

A (named) list of random vectors. For example, the `lm` method returns a list with components `sigma` (the residual s.d.) and `beta`, the regression coefficients.

Author(s)

Jouni Kerman <jouni@kerman.com>
postsim

References

See also vignette("rv").

Examples

```r
## Not run:
x <- 1:20
y <- rnorm(length(x), mean=x, sd=10)
print(summary(fit <- lm(y ~ x)))
bayes.estimates <- posterior(fit)

## End(Not run)
```

Description
DEFUNCT. Use posterior instead.

Generate posterior simulations for a given fitted linear or general linear model, assuming the standard "noninformative" priors on the unknowns.

Usage

```r
postsim(fit)
```

Arguments

```r
fit an lm or glm object
```

Value

A (named) random vector for each fitted coefficient.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
print.rv

Print Distribution Summary of a Random Variable

Description

Prints a summary of the random variable object.

Usage

```r
## S3 method for class 'rv'
print(x, digits=rvpar("print.digits"), ...)
```

Arguments

- `x`: an `rv` object
- `digits`: minimal number of significant digits
- `...`: further arguments passed to or from other methods

Details

Invokes first the summary method of the object, then prints the result.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also `vignette("rv")`.

See Also

`summary.rv`, `rvfactor`

Examples

```r
print(rvnorm(mean=rvnorm(1)))
```
quantile.rv

Distribution of a Quantile of a Random Vector

Description

quantile.rv returns the distribution of the quantile of a random vector (as a random variable).

Usage

S3 method for class 'rv'
quantile(x, ...)

Arguments

x an object

... further arguments passed to or from other methods

Value

A random vector (rv object) with components giving the distribution of the desired quantiles.

Note

quantile.rv does not return the simulated quantiles of the quantiles of the argument x. This is done by rvquantile.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

x <- rnorm(30)
quantile(x)
range.rv

Distribution of the Range of a Random Vector

Description

range.rv returns a 2-component random vector containing the distributions of the minimum and the maximum values of all the given arguments.

Usage

```r
## S3 method for class 'rv'
range(..., na.rm=FALSE, finite=FALSE)
```

Arguments

- `...`: further arguments passed to or from other methods
- `na.rm`: logical, indicating if NAs should be omitted
- `finite`: logical, indicating if all non-finite elements should be omitted

Details

This is the rv-compatible version of the function `range`.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also `vignette("rv")`.

See Also

- `quantile.rv`

Examples

```r
x <- rnorm(mean=1:10, sd=1)
print(range(x))
print(quantile(x, c(0,1)))
```
Replicate Elements of Random Vectors

Description

Transpose a random array by permuting its dimensions and optionally resizing it.

Usage

```r
## S3 method for class 'rv'
rep(x, times, ...)
```

Arguments

- `x`: a random vector to be replicated
- `times`: number of replications
- `...`: further arguments passed to `rep`

Details

This is the `rv`-compatible version of the function `rep`.

Since `rep` is not a generic function, the whole name `rep.rv` must be specified when calling the function when `x` is an 'rv' object.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

- `rep`

Examples

```r
print(rep(rvnorm(1), times=4))
```
Description

Creates or tests for objects of type “rv”.

Usage

- `rv(length = 0)`
- `as.rv(x, ...)`
- `is.rv(x)`
- `is.random(x)`
- `as.rvobj(x)`
- `is.rvobj(x)`

Arguments

- `length` desired length.
- `x` object to be coerced or tested.
- `...` further arguments passed to or from other methods.

Details

`rv` creates a random vector of the specified length. The elements of the vector are all equal to `NA`.

`is.rv` returns TRUE if its argument is a `rv` object, FALSE otherwise.

`as.rv` attempts to coerce its argument to the random vector (rv) type.

`is.random` returns TRUE or FALSE for each component of the argument vector, depending on whether the component is a random variable object.

`is.rvobj` tests whether its argument object is either of class `rv` or of class `rvsummary`.

`as.rvobj` coerces its argument object to `rv` unless the object is an `rv` object (`is.rvobj(x)` is TRUE).

Value

An `rv` object of desired length, with the single simulation value `NA`.

Note

`rv` objects are internally lists with the class attribute set to “rv”. The number of simulations in `rv` objects is set by `setnsims`. This is by default set to 2500.

Author(s)

Jouni Kerman <jouni@kerman.com>
References

See also vignette("rv").

See Also

For a short version of the paper, view the vignette by vignette("rv").

Examples

```r
x <- rv(1)
```

rvarray

Matrices and Arrays of Random Vectors

Description

Arrange a given random vector into a matrix or array form.

These are 'rv' compatible versions of the functions `matrix` and `array`.

Usage

```r
rvarray(data = NA, dim = length(data), dimnames = NULL)
rvmatrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
```

S3 method for class 'rv'

```r
is.matrix(x)
```

S3 method for class 'rv'

```r
as.matrix(x, ...)
```

Arguments

- `data` an optional data vector.
- `nrow` the desired number of rows.
- `ncol` the desired number of columns.
- `byrow` logical. If FALSE (the default) the matrix is filled by columns, otherwise the matrix is filled by rows.
- `dimnames` A dimnames attribute for the matrix: a list of length 2 giving the row and column names respectively.
- `dim` the dim attribute for the array to be created, that is a vector of length one or more giving the maximal indices in each dimension.
- `...` arguments passed to other methods
- `x` an R object.
Details

The function `rvmatrix` generates the random variable matrix via an `rvarray` call.

The `rvarray` function calls first `array` to set the dimensions of the argument data and then coerces the resulting array object to an 'rv' object.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

To plot random matrices, see `mlplot`.

Examples

```r
n <- 3; n.x <- 4; n <- (n.rows*n.cols)
mu.true <- rnorm(1:n.rows, mean=1:n.rows, sd=1)
theta <- rvmatrix(rvnorm(n=n.cols, mean=mu.true, sd=0.5), nrow=n.rows)
col.labels <- paste("Time", 1:n.cols, sep=":")
row.labels <- paste("Unit", 1:n.rows, sep=":")
dimnames(theta) <- list(row.labels, col.labels)
print(theta)
print(E(theta))
```

rvattr

Attributes of Random Variables

Description

rvattr

Usage

```r
rvattr(x, attrib=NULL)
rvattr(x, attrib=NULL, by.name=FALSE) <- value
```

Arguments

- `x` an object
- `attrib` name of the attribute
- `by.name` logical; attempt matching of attributes by name?
- `value` vector of values to set; can be a list or an atomic vector
rvbern

Details

If by_name=TRUE, the values within the list value are matched by their name (e.g. ‘theta[1]’) if possible. Matching by NA or the empty string in a name is not possible.

Otherwise, the list is matched by position; in this case, the length of value must be equal to that of x.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

##

```r
rvbern(n=1, prob, logical=FALSE)
```

Arguments

- `n`: number of random scalars to draw
- `prob`: probability of “success”; may be a random vector itself
- `logical`: logical; return a logical random variable instead

Details

rvbern is a special case of rvbinom with the argument size=1.

If logical is TRUE, the function returns a logical random variable which has TRUE for 1, FALSE for 0. (The printed summary of this object is slightly different from a regular continuous numeric random variable.)
Value

A random vector (an rv object) of length \(n \).

Note

The resulting vector will not be independent and identically distributed Bernoulli unless \(\text{prob} \) is a fixed number.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
rvbern(2, prob=0.5)
rvbinom(2, size=1, prob=0.5) # Equivalent
print(rvbern(1, 0.5, logical=TRUE)) # won't show the quantiles
print(as.logical(rvbern(1, 0.5))) # equivalent
```

rvbeta

Generate Random Vectors from a Beta Sampling Model

Description

\(\text{rvbeta} \) generates a random vector from the beta sampling model;

\(\text{rvnbeta}(n, a, b) \) ("neutral" Beta distribution) is equivalent to \(\text{rvbeta}(n, 1/3+a, 1/3+b) \).

Usage

```r
rvbeta(n=1, shape1, shape2)
rvnbeta(n=1, shape1, shape2)
```

Arguments

- \(n \) : integer, number of random variables to generate
- \(\text{shape1} \) : positive number or rv, 1st shape parameter
- \(\text{shape2} \) : positive number or rv, 2nd shape parameter

Author(s)

Jouni Kerman <jouni@kerman.com>
rvbinom

Generate Random Variables from a Binomial Sampling Model

Description

Generates a random vector from a binomial sampling model.

Usage

rvbinom(n, size, prob)

Arguments

n integer, number of random variables to generate
size integer or integer-valued rv: the number of trials (size of each sample)
prob prior probability of success of each trial (may be constant or an rv object)

Details

rvbinom generates a random vector with given length, the distribution for size and the distribution for the probability of success.

Value

An rv object.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
Examples

s <- 1+rvpois(1,lambda=3) # A prior distribution on the 'size' parameter.
rvbinom(1, size=s, prob=0.5) # The 'size' is random.
p <- rvbinom(1, 10, prob=0.5)/10 # Prior probability of success.
rvbinom(1, size=10, prob=p) # Now the probability is random.
rvbinom(1, size=s, prob=p) # Both the size and the probability are random.

rvboot

Generate a Random Vector from an Empirical Distribution

Description

rvboot generates a random vector of the same length as data from the empirical distribution of the data.

Usage

rvboot(data)

Arguments

data

A vector of constants

Details

rvboot

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

y <- rnorm(30) # Some data: 30 draws from standard normal.
x <- rvboot(y) # A random vector of length 30 (each component has the same distribution)
print(mean(x)) # Bootstrap estimate of the mean.
print(sd.rv(x)) # Bootstrap estimate of the sd.
rvcat

Generate Categorical Random Variables

Description

Generates a random factor (i.e. a categorical random variable), given the probabilities of each category and their corresponding labels.

Usage

rvcat(n=1, prob, levels=NULL)

Arguments

n integer, number of random variables to generate
prob vector of probabilities of successes of each trial (may be constant or an rv object)
levels (character) labels for the categories

Details

The length of prob determines the number of bins.
The vector prob will be normalized to have sum 1.

Value

A random factor of length length(prob).

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

rvfactor

Examples

rvcat(1, prob=c(0.5, 0.3, 0.2)) # default levels: 1, 2, 3
rvcat(1, prob=c(5, 3, 2)) # same as above
p <- rvdirichlet(1, alpha=c(0.7, 0.3)) # prior probabilities
rvcat(1, prob=p, levels=c("Group 1", "Group 2"))
Generate Random Variables from a Cauchy Sampling Model

rvcauchy

Description

Random vector generation for the Cauchy distribution.

Usage

```r
rvcauchy(n, location = 0, scale = 1)
```

Arguments

- `n`: integer: number of variables to generate
- `location`: location parameter (may be random)
- `scale`: scale parameter (may be random)

Details

For details on the Cauchy distribution, see `Cauchy`. See also `rvt`; Cauchy is a special case of the t-distribution with 1 degree of freedom, and therefore `rvcauchy(n, location, scale)` is equivalent to `rvt(n, mu, scale, df=1)`.

Value

A random vector (rv object) of length n.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
Generate Random Variables from a Chi-Square Sampling Model

Description

Generates a random vector from a chi-square sampling model.

Usage

rvchisq(n=1, df, ncp = 0)

Arguments

- **n**: number of variables to generate
- **df**: integer, degrees of freedom, may be random
- **ncp**: non-centrality parameter, may be random

Details

If any of the arguments are random, the resulting simulations may have non-Poisson marginal distributions.

Value

A random vector (rv object) of length n.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```
#```
rvci  

_Credible (Uncertainty) Intervals for Random Scalars_

Description

Computes credible (uncertainty) intervals for a given vector, given quantiles or the size of the middle interval.

Usage

```
rvci(obj, interval=0.95, one.sided=FALSE, left=TRUE)
```

Arguments

- **obj**: random scalar or vector
- **interval**: size of the middle interval or the quantile range of the interval
- **one.sided**: logical, FALSE if two-sided interval is desired
- **left**: logical, indicating if the left one-sided interval is desired

Details

If `interval` is of length two or more, the return value will be the quantiles given by `range(interval)`.

Value

For two-sided intervals, an array of numbers of dimension `c(2, length(x))`, for one-sided intervals, a vector of the same length as `x`.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

```
rvci(rvnorm(1), interval=0.683) # Should be about c(-1,1).
```
**Description**

Coerces a given vector of constants into a random vector with 1 simulation in each component.

**Usage**

rvconst(n=1, x)

**Arguments**

- \( n \) integer: number of variables to generate
- \( x \) a vector of constants

**Details**

Coerces a given vector of constants into a random vector with 1 simulation in each component.

**Value**

A random vector (rv object) of length \( n \).

**Author(s)**

Jouni Kerman <jouni@kerman.com>

**References**


See also vignette("rv").

**Examples**

```r
x <- rvconst(x=1:3)
c(x, 4)
```
**rvcov**  
*Covariance Between Components of Random Vectors*

**Description**

`rvcov`

**Usage**

`rvcov(x, y=NULL, ...)`

**Arguments**

- `x` a random vector
- `y` (optional) a random vector
- `...` further arguments passed to or from other methods

**Details**

`rvcov`

**Value**

A covariance matrix.

**Author(s)**

Jouni Kerman <jouni@kerman.com>

**References**


See also vignette("rv").

**Examples**

```r
x <- rnorm(mean=1:3)
y <- rnorm(mean=2:4)
rvcov(x, y)
rvcov(x, x)
```
**rvcut**

*Convert Numeric to Random Factor*

**Description**

Convert implements the 'cut' function using random variables.

**Usage**

```r
rvcut(x, ...)
S3 method for class 'rv'
```

**Arguments**

- `x` a plain or a random vector which is to be converted to a factor by cutting.
- `...` arguments passed to the function `cut`.

**Value**

A random factor.

**Author(s)**

Jouni Kerman <jouni@kerman.com>

**References**


See also vignette("rv").

**See Also**

`rvfactor`, `cut`.

**Examples**

```r
rvcut(rvnorm(1), breaks=c(-Inf,-2,-1,0,1,2,Inf))
```
rvdens  
\textit{Sample from an arbitrary density function using grid approximation}

**Description**

rvdens generates a random vector where each simulation comes from a Bernoulli sampling distribution.

**Usage**

```r
rvdens(n=1, FUN, range, unitprecision=10, ...)
```

**Arguments**

- `n`: number of random scalars to draw
- `FUN`: density function
- `range`: range to discretize over
- `unitprecision`: how many points per unit length
- `...`: other arguments passed on to `FUN`

**Value**

A random vector (an rv object) of length `n`.

**Note**

The resulting vector will not be independent and identically distributed Bernoulli unless `prob` is a fixed number.

**Author(s)**

Jouni Kerman \(<jouni@kerman.com>\)

**References**


See also vignette("rv").

**Examples**

```r
x <- rvdens(FUN=stats::dnorm, range=c(-5, 5), unitprecision=10)
y <- rnorm(1) # Should be close to x
```
rvdirichlet

Generate Random Variables from a Dirichlet Sampling Model

Description

Generates random variables from a Dirichlet sampling model.

Usage

rvdirichlet(n=1, alpha)

Arguments

n integer: number of vectors to generate
alpha the parameter vector; may be random

Details

The Dirichlet distribution is a generalization of the Beta distribution. (If alpha is of length two, rvdirichlet draws from the Beta model.)

Value

A random vector (rv object) of length n.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

a <- rvdirichlet(1, alpha=c(6, 3, 1)) #
sum(a) # one with probability 1
rvdiscrete  Generate Random Vectors from a Discrete Sampling Model

**Description**

Generates random variables from a discrete distribution (from a finite population with replacement).

**Usage**

```r
eval(rvdiscrete(n=1, x, prob=NULL))
```

**Arguments**

- `n`: integer; number of scalars to generate
- `x`: values of the distribution
- `prob`: probabilities (optional, default: all equal)

**Details**

Computes a random vector of length `n`, consisting of identically distributed discrete random scalars with the discrete distribution with values `x` and corresponding probabilities `prob`. If `prob` is not given, all values are considered equally distributed.

**Author(s)**

Jouni Kerman <jouni@kerman.com>

**References**


See also vignette("rv").

**Examples**

```r
8 people draw a number each from 1..10 with replacement.
What is the probability that the highest number of the eight is "10"?
> u <- rvdiscrete(n=8, x=1:10) # 8 iid variables from the discrete uniform 1:10.
> Pr(max(u)==10)

What is the probability that the person with the 3rd smallest number
has at least "3"?
> s <- sort(u) # order distribution
> Pr(s[3]>=3)
```
rvempirical

Generate a Random Vector from an Empirical Distribution

Description

rvempirical generates a random vector of the same length as data from the empirical distribution of the data.

Usage

rvempirical(n, data)

Arguments

n Number of i.i.d. rv components to generate
data Data (constants)

Details

rvempirical

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

y <- c(1.0, 1.2, 3, 1.1, 0.8, 0.9) ## Some data
x <- rvempirical(4, data=y)
### rvexp

**Generate Random Vectors from an Exponential Sampling Model**

#### Description

rvexp

#### Usage

rvexp(n=1L, rate=1I)

#### Arguments

- `n`: integer: number of variables to generate
- `rate`: prior distribution for the rate parameter (constant or random)

#### Details

rvexp

#### Author(s)

Jouni Kerman <jouni@kerman.com>

#### References


See also vignette("rv").

#### Examples

```r
y <- rvexp(1L, rate=rvexp(1I)) # What marginal distribution does y have now?
```

---

### rvfactor

**Categorical Random Variables (Random Factors)**

#### Description

Creates or tests for objects of type “rvfactor”.

---
Usage

rvfactor(x, ...)
   ## S3 method for class 'rv'
rvfactor(x, levels=NULL, ...)
   is.rvfactor(x)
   ## S3 method for class 'rvfactor'
as.rv(x, ...)
   as.rvfactor(x, ...)
   ## S3 method for class 'rvfactor'
print(x, all.levels=FALSE, ...)

Arguments

x          object to be coerced or tested.
levels     factor levels (labels for the levels)
all.levels logical; whether to print all levels or not (see below for details)
...        other arguments

Details

Internally random factors are integer-valued just like regular factors in R. The number of levels to print when all.levels==FALSE can be set by rvpar(max.levels=...). By default this is set to 10.

Value

rvfactor: an rvfactor object.
is.rvfactor: TRUE or FALSE.
as.rv.rvfactor: an rv object.
as.rvfactor.rv: an rvfactor object.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

# Probabilities of each integer of trunc(Z) where Z ~ N(0,1) ?
x <- rnorm(1)
rvfactor(trunc(x))
rvfactor(x>0)
rvfactor(rvpois(1, lambda=0.5))
rvgamma

Generate Random Variables from a Gamma Sampling Model

Description

Generates random variables from a Gamma sampling model.

Usage

rvgamma(n=1, shape, rate = 1, scale = 1/rate)
rvngamma(n=1, shape, rate = 1, scale = 1/rate)

Arguments

n integer: number of variables to generate
shape shape parameter, may be a rv
rate rate parameter, may be a rv
scale inverse of rate, may be specified optionally instead of rate

Details

rvngamma(n, shape, rate) is equivalent to rvgamma(n, 1/3 + shape, rate).

Value

A random vector (rv object).

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

round(rvmedian(rvngamma(n=1, shape=1:10, rate=1)), 1) ## close to 1:10
Description

`rvhist` shows a grid of histograms of simulations of the components of a random vector.

Usage

```
rvhist(x, ...)
```

Arguments

- `x`: an `rv` object
- `...`: further arguments passed to the function `hist`

Details

Outputs a histogram using the `hist` function with the option `freq=FALSE`. This can be overridden by specifying the argument `freq` or `prob`. See the function `hist` for details.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Description

`rvifelse` is the `rv`-compatible version of the function `ifelse`.

Usage

```
rvifelse (test, yes, no)
```
Arguments

test an object which can be coerced to logical mode.

yes return values for true elements of test

no return joint simulations and not simulations from each component separately

Details

rvifelse returns a random value with the same shape as test which is filled with random or constant elements selected from either yes or no, depending on whether the random draw in an element of test is TRUE or FALSE.

Value

A numeric array of dimensions size times length(x).

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

See Also

ifelse.

rvinvchisq Generate Random Variables from a Inverse-Chi-Square Sampling Model

Description

rvinvchisq

Usage

rvinvchisq(n=1, df, scale=1)

Arguments

n integer: number of variables to generate

df degrees of freedom (may be random)

scale scale parameter (may be random)
Details

rvinvchisq

Value

A random vector (rv object).

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

rvinvchisq(df=3, scale=2)

---

**rvmapply**

*Apply a function to multiple random vector arguments*

Description

`rvmapply` is the rv-compatible version of `mapply`. It repeats the function `FUN` for each joint draw of the random (or constant) arguments, while allowing vectorizing.

Usage

```
rvmapply(FUN, ..., MoreArgs=NULL, SIMPLIFY = FALSE, USE.NAMES=TRUE, SAMPLESIZE=NULL)
```

```
rvVectorize(FUN, vectorize.args = arg.names, SIMPLIFY = FALSE, USE.NAMES = TRUE, SAMPLESIZE=NULL)
```

Arguments

- **FUN**: the function to apply to the simulations of X.
- **MoreArgs**: Other args passed to FUN ‘as is’ (must not be rv objects unless the function already accepts them)
- **USE.NAMES**: logical; see `mapply` for details
- **SIMPLIFY**: logical; see `mapply` for details
- **SAMPLESIZE**: if specified, takes a (joint) sample of the simulations and processes only them.
- **vectorize.args**: a character vector of arguments which should be vectorized. Defaults to all arguments to FUN.
- **...**: further arguments to FUN, possibly random vectors or array.
Details

`rvmatch` applies a given function to each simulation (vector or array) of the given random vectors, returning the results as a random vector or array.

The dimensions of each joint draw are preserved. For an example, see `solve`, that returns the distribution of the inverse of a random matrix.

Usually used in functions that implement an 'rv'-compatible routine.

For an example of a function that uses `SAMPLESIZE`, `abline`.

Value

Depends on `FUN`; a random vector or array if `FUN` is numeric.

Note

If the function (`FUN`) has an argument “`FUN`”, it must be specified within the list supplied to `MoreArgs`.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also `vignette("rv")`.

See Also

`mapply`, `simapply`

---

### rvmatch

**Generate a Random Vector from a Bernoulli Sampling Model**

**Description**

`rvmatch` returns a (random) vector of the positions of (first) matches of its first argument in its second.

`%*in*%` is a binary operator (analogous in its operation to `%in%`) which returns a logical (random) vector indicating if there is a match or not for its left operand.

**Usage**

```r
rvmatch(x, table, nomatch = NA_integer_, incomparables = NULL)
x %*in*% y
```
Arguments

- `x`: random vector, regular atomic vector, or NULL: the values to be matched.
- `table, y`: random vector, regular atomic vector, or NULL: the values to be matched against.
- `nomatch`: the value to be returned in the case when no match is found. Note that the value is coerced to `integer`.
- `incomparables`: a vector of values that cannot be matched. Any value in `x` matching a value in this vector is assigned the `nomatch` value. For historical reasons, `FALSE` is equivalent to NULL.

Details

... 

Value

A random vector (an `rv` object) of the same length as `x`.

- `rvmatch` returns an integer-valued vector.
- `%*in*%` returns a logical-valued vector.
- Both functions are compatible with regular atomic vectors.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

```r
x <- rvempirical(5, 1:10)
z <- rvmatch(x, table=1:3, nomatch=0L)
```

---

**rvmean**

**Expectation of a Random Variable**

Description

`rvmean`

Usage

- `rvmean(x)`
- `E(x)`
- `Pr(X)`
Arguments

- x: an rv object
- X: a logical rv object

Details

`rvmean` computes the means of the simulations of all individual components of a random vector (rv) object.

E is an alias for `rvmean`, standing for “Expectation.”

Pr is another alias for `rvmean`, standing for “Probability of”; suggested to be used when the argument is a logical statement involving random variables (that is, a description of an event such as x>0 or x>y). Then Pr(x>0) gives the probability of the event “x>0”. The statement x>0 returns a Bernoulli (indicator) random variable object (having 1/0 or TRUE/FALSE values) and the expectation of such variable is just the probability of the event where the indicator is one.

Value

A numerical vector with the same dimension as x.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

See Also

`mean.rv`: distribution of the arithmetic mean of a vector; `rvmin`, `rvmax`, `rvmedian`, link{rvvar}, `rvsd`.

Examples

```r
x <- rnorm(mean=(1:10)/5, sd=1)
rvmean(x) # means of the 10 components
E(x) # same as rvmean(x)
Pr(x>1) # probabilities that each component is >1.
```
The distribution of the mean of uniform random variables

Description

The distribution of the mean of uniform random variables with each of them in the interval (-1, 1), then scaled and shifted.

Usage

rvttriang(n = 1, mode, scale)
rvmeanunif(n=1, mode, scale, df)

Arguments

n               Length of the vector to output
mode            Mode (center) of the distribution
scale           Scale (half-width) of the distribution around the mode
df              “degrees of freedom”: number of independent components to average

Details

Assuming that all inputs are constants, each generated variable has a mode (center) at mode, constrained between (-scale, scale).

The shape becomes more and more bell-shaped (Normal) as the number of the independent variables in the sum (mean) increases.

The case of df=2 (mean of two variables) is the special case of the symmetric triangular distribution in the range

Value

A random vector of length n.

Author(s)

J Kerman

Examples

x <- rvtriang(1)
y <- rvmeanunif(df=2) ## same distribution as that of x
Description
Generates a random vector from a multinomial sampling model.

Usage
rvmultinom(n=1, size=1, prob)

Arguments
- n: integer, number of random variables to generate
- size: integer or integer-valued rv: the number of trials (size of each sample)
- prob: vector (of length at least 3) prior probabilities of successes of each trial (may be constant or an rv object)

Details
The length of prob determines the number of bins.
The vector prob will be normalized to have sum 1.
If length(prob) is two, rvbinom is called instead.
NOTE. Case of random n or size or prob — not yet optimized for speed.

Value
A random array of dimensions length(prob) times n.

Author(s)
Jouni Kerman <jouni@kerman.com>

References
See also vignette("rv").

Examples
y <- rvmultinom(n=3, size=1, prob=c(0.20, 0.30, 0.50))
rvnchains

Number of Markov Chains Used to Generate Simulations of a Random Vector

Description

Retrieves the number of mcmc chains in each components of the argument.

Usage

rvnchains(x)

Arguments

x an rv object (supposed to be generated by a MCMC process)

Details

Assumes that the rv object was generated by a MCMC process. Umacs and R2WinBUGS are compatible.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

See Also

as.rv.bugs

Examples

#
Description

Retrieves the number of effective draws in each component of the argument.

Usage

rvneff(x)

Arguments

x an rv object

Details

The number of effective draws is supposed to be saved by the simulation generating program (e.g. WinBUGS via R2WinBUGS).

Value

A numeric object of the same length as the argument x.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

#
Generate Random Variables from a Gaussian (Normal) Sampling Model

Description

Generates a random vector from a Gaussian sampling model.

Usage

rvnorm(n=1, mean=0, sd=1, var=NULL, precision)

Arguments

- **n**: integer: number of variables to generate.
- **mean**: mean, may be a rv
- **sd**: standard deviation; scalar or vector (constant or rv, not matrix)
- **var**: variance, can be given instead of sd. Scalar, vector, or matrix.
- **precision**: inverse variance or variance matrix, may be given instead of sd or var

Value

An rv object of length n times the length of the mean vector.
If mean is a vector, a vector is returned: n refers to how many vectors or scalars are replicated.

Note

If any of the arguments are random, the resulting simulations may have non-normal marginal distributions; for example, if an inverse-chi-squared scalar rv var and zero mean is given, the resulting rv will have a t-distribution.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

```r
x <- rvnorm(mean=1:10, sd=1:10) # A vector of length 10.
Sigma <- diag(1:10)
y <- rvnorm(mean=1:10, var=Sigma)
```
rvnsims returns the number of simulations stored in each component of its argument; setnsims sets the default number of simulations; getnsims retrieves the default number of simulations.

Usage

rvnsims(x)
setnsims(n.sims)
getnsims()

Arguments

x an rv object.
n.sims default number of simulations; must be at least 2.

Details

If the argument is a non-rv numeric vector, rvnsims returns 1 (corresponding to a ‘constant’) for each component.
The minimum number of default simulations is 2.

Value

rvnsims: a vector of integers.
setnsims: previously set default number of simulations.
getnsims: (integer) currently set default number of simulations.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
Examples

```r
#
rvnsims(1.23) # 1
x <- rvmnorm(1) # an rv
rvnsims(x) # equal to setnsims()
rvnsims(x)==nrow(sims(x)) # TRUE
rvnsims(x)==getnnsims() # TRUE
setnnsims(1000) # set n.sims to 1000
n.sims <- setnnsims(100000) # s is now 1000
print(getnnsims()) # prints 10000
setnnsims(n.sims) # restore the number of simulations back to 1000
```

**rvpar**

*Set or Query Parameters of the 'rv' Package*

**Description**

Sets or retrieves parameters of the *rv* package.

**Usage**

```
rvpar(...)
```

**Arguments**

... arguments in tag = value form, or a list or character vector of tagged values. The available tags are described below.

**Details**

- **rvcol**: color of a random point (interval), such as ‘red’ or ‘blue’
- **rvlex**: middle interval expansion factor
- **rvlwd**: line weight of a random interval
- **print.digits**: number of digits to show in the summaries
- **rv-point**: what to output when plotting a random point; default list("95\%", "50\%", "mean")
- **points-sample**: number of points to plot when plotting a *rv-rv* scatterplot. Default 400.
- **line-sample**: number of lines to draw when plotting a random sample of lines (see `abline`). Default 20.
- **summary.dimnames**: logical; output dimnames in the summary of an *rv* object? Default TRUE.
- **summary.quantiles.numeric**: vector of quantiles to compute for the summary of a numeric *rv* object.
- **summary.quantiles.integer**: vector of quantiles to compute for the summary of an integer-valued *rv* object. By default contains 0 and 1 (for the min and max values).
Value

In the case of a single tag query, the requested value.
In the case of multiple tag query, a list of requested values.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

rvpar()$rvcol
rvpar("rvcol")

---

rvpermut Random Vectors with a Permutation Distribution

Description

Generates a random vector with each component having a permutation distribution based on the given (fixed) data vector.

Usage

rvpermut(data, prob=NULL)

Arguments

data a fixed numeric vector
prob optional probabilities for the components in data

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
rvpois

Examples

x <- rvpermut(1:10)

rvpois

Generate Random Vectors from a Poisson Sampling Model

Description

Generates random variables from a Poisson sampling model.

Usage

rvpois(n, lambda)

Arguments

n integer: number of variables to generate
lambda a vector of (positive) mean parameters; (may be random)

Note

If any of the arguments are random, the resulting simulations may have non-Poisson marginal distributions.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

x <- rvpois(lambda=10) # A Poisson rv with mean 10
lbd <- rvchisq(1,1) # Some positive rv
y <- rvpois(lambda=lbd) # Not a Poisson rv, although each simulation is a draw from Poisson.
rvpredict  

Generate predictions from models

Description

Performs predictions (in the form of rv objects) from models based on given covariates.

Usage

rvpredict(object, ...)  
## S3 method for class 'lm'  
rvpredict(object, newdata, ...)  

Arguments

- **object**: An object representing a statistical model fit.
- **newdata**: A data frame with new covariates to be used in the predictions. The column names of the data frame must match those in the model matrix (although order may be arbitrary). If omitted, the model matrix is used instead; the resulting predictions are then the replications of the data. Note: this can be an rv object to incorporate extra uncertainty into predictions.
- **...**: Arguments passed to and from other methods.

Details

The lm method generates predictions of the outcome variable. The posterior coefficient estimates (the “intercept” and the “betas”) are estimated Bayesianly by posterior(object); the coefficients are multiplied by newdata (if omitted, the model covariate matrix is used instead) to obtain the predicted model mean; lastly, the outcomes are predicted from the Normal sampling model, taking into account the sampling variability along with the uncertainty in the estimation of the standard deviation (‘sigma’).

The covariate matrix newdata can be an rv, representing additional uncertainty in the covariates.

Value

For the lm method, a vector as long as there are rows in the data frame newdata.

Author(s)

J Kerman
Examples

```r
c C create some fake data
n <- 10
C C some covariates
set.seed(1)
X <- data.frame(x1=rnorm(n, mean=0), x2=rpois(n, 10) - 10)
y.mean <- (1.0 + 2.0 * X$x1 + 3.0 * X$x2)
y <- rnorm(n, y.mean, sd=1.5) # n random numbers
D <- cbind(data.frame(y=y), X)
C C regression model fit
obj <- lm(y ~ x1 + x2, data=D)
C C bayesian estimates
posterior(obj)
C C replications
y.rep <- rvpredict(obj)
C C Predictions at the mean of the covariates
X.pred <- data.frame(x1=mean(X$x1), x2=mean(X$x2))
y.pred <- rvpredict(obj, newdata=X.pred)
C C Plot predictions
plotrv(D$x1, y.rep)
points(D$x1, D$y, col="red")
C C 'Perturb' (add uncertainty to) covariate x1
X.pred2 <- X
X.pred2$x1 <- rnorm(n=n, mean=X.pred2$x1, sd=sd(X.pred2$x1))
y.pred2 <- rvpredict(obj, newdata=X.pred2)
```

---

`rvquantile`  
Componentwise Quantiles of Random Variables

**Description**

Computes componentwise quantiles of random vectors or arrays.

**Usage**

```r
rvquantile(x, ...)
```

**Arguments**

- `x`  
  an object

- `probs`  
  numeric vector of probabilities with values in `[0,1]`

- `ignoreInf`  
  ignore infinite values

- `...`  
  further arguments passed to `quantile`
Details

`rvquantile` applies the quantile function to each column of `sims(x)`. `rvmedian` applies `median` to each column of `sims(x)`.

Value

A numeric vector of quantiles.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

```r
def x <- rnorm(3)
rvquantile(x)
rvquantile(x, probs=c(0, 0.01, 0.99, 1))
rvmedian(x)
```

---

**rvRhat**  
*R-hat Convergence Diagnostic*

Description

Retrieves the R-hat convergence diagnostic for each component of the argument.

Usage

`rvRhat(x)`

Arguments

`x`  
an object

Details

The R-hat values are assumed to be saved as attributes. If they are not available, `NA` will be returned. R-hat is computed by programs such as Umacs and R2WinBUGS.

Value

Vector of numbers, `NA` if R-hat is not available.
**rvsample**

**Author(s)**
Jouni Kerman <jouni@kerman.com>

**References**
See also vignette("rv").

---

**rvsample**

*Draw a Sample from the Simulation Matrix of a Random Variable*

**Description**
Draws a sample of desired size from each component of a given random variable `x`.

**Usage**
```
rvsample (x, size = 1, jointly = TRUE, reject.na = FALSE)
```

**Arguments**
- `x`: an object
- `size`: size of the sample
- `jointly`: return joint simulations and not simulations from each component separately
- `reject.na`: reject each draw that contains an NA

**Details**
Samples (with replacement) from the distribution of the random variable object. In effect it samples from the rows of the simulation matrix `sims(x)`.

**Value**
*A numeric* array of dimensions `size` times `length(x)`.

**Author(s)**
Jouni Kerman <jouni@kerman.com>

**References**
See also vignette("rv").
rvsimapply

Apply a Function to Columns of the Matrix of Simulation of a Random Vector

Description

rvsimapply

Usage

rvsimapply(x, FUN, ...)

Arguments

x an object
FUN an R function object
... further arguments passed to the function FUN

Details

rvsimapply applies a given function to the rows of the simulation matrix of the given random vector.
If the function is to be applied to rows of the simulation matrix, use simapply or rvmapply instead.
Usually used in functions that implement an 'rv'-compatible routine.

Value

A numeric vector or array.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

Examples

#
rvsims

Create Random Vectors from Simulation Draws

Description
rvsims takes a vector, matrix, or list (sims) containing simulations, and returns a random vector (an object of type `rv`)

Usage
rvsims(sims, n.sims=getnsims(), permute=FALSE)

Arguments
- `sims`: an array of simulations (1, or 2-dimensional) or a list
- `n.sims`: number of simulations to save
- `permute`: logical, indicate if scramble the simulations

Details
If `sims` is a plain numeric vector, this is interpreted to be equivalent to a one-dimensional array, containing simulations for one single random variable.

If the array `sims` is one-dimensional, this is interpreted to be equivalent to a two-dimensional array with 1 column.

If `sims` is two-dimensional, the columns are supposed to contain simulations for one or more several random variables.

If `sims` is a list, the numeric vectors are recursively combined to a list of random vectors: each component of the list is supposed to be containing one (joint) draw from some distribution—this may be a list.

If `permute` is TRUE, the simulations are scrambled, i.e. the joint draws are permuted randomly.

Author(s)
Jouni Kerman <jouni@kerman.com>

References
See also vignette("rv").
Examples

```r
x and y have the same distributions but not the same simulations:

n.sims <- 200L
setnsims(n.sims)
y <- rvnorm(1)
x1 <- rvsims(rnorm(n.sims))
##
s <- sims(x1)
z <- array(s) # One-dimensional array
x2 <- rvsims(z) # Same as
##
identical(x1, x2) # TRUE
##
s <- t(array(rnorm(n.sims * 2, mean=c(0, 10)), dim=c(2, n.sims)))
x3 <- rvsims(s)
identical(2L, length(x3)) # TRUE
```

**rvsummary**

Random Vector Summaries

Description

`rvsummary` is a class of objects that hold the summary information on each scalar component of a random variable (quantiles, mean, sd, number of simulations etc.)

Usage

```r
is.rvsummary(x)
as.rvsummary(x, ...)
S3 method for class 'rv'
as.rvsummary(x, quantiles = (0:200/200), ...)
S3 method for class 'rvsummary'
as.rvsummary(x, ...)
S3 method for class 'data.frame'
as.rvsummary(x, quantiles = rvpar("summary.quantiles.numeric"), ...)
S3 method for class 'rvsummary'
as.data.frame(x, ...)
S3 method for class 'rvsummary_rvfactor'
print(x, all.levels=FALSE, ...)
S3 method for class 'rvsummary'
print(x, digits=3, ...)
```
Arguments

x  object to be coerced or tested
quantiles  quantiles to calculate and store in the object
digits  integer; how many digits to round the numbers to
all.levels  logical; whether to print all levels or not (see below for details)
...  further arguments passed to or from other methods.

Details

The `rvsummary` class provides a means to store a concise representation of the marginal posterior distributions of the vector components. By default, the 201 quantiles

\[ 0, 0.005, 0.01, 0.015, \ldots, 0.990, 0.995, 1 \]

are saved for each vector component in an `rvsummary` object.

`is.rvsummary` tests whether the object is an `rvsummary` object; `as.rvsummary` coerces a random vector object into a `rvsummary` object.

`as.data.frame` is another way to obtain the data frame that is produced by the `summary` method.

A data frame that has the format of an `rv` summary can be coerced into an `rvsummary`; if quantiles are not specified within the data frame, quantiles from the Normal distribution are filled in, if the mean and s.d. are given.

Therefore, the following (generic) functions work with `rvsummary` objects: `rvmean`, `rvsd`, `rvvar`, `rvquantile`, `rnsims`, `sims`, and consequently any ‘rv-only’ function that depends only on these functions will work; e.g. `is.constant`, which depends only on `rvnsims`.

The method `is.double` is provided for compatibility reasons; this is needed in a function called by `plot.rvsummary`.

The arithmetic operators and mathematical functions will not work with `rvsummary` objects.

The `sims` method returns the quantiles.

Value

An object of class `rvsummary` and of subclass `rvsummary_numeric`, `rvsummary_integer`, `rvsummary_logical`, or `rvsummary_rvfactor`.

Author(s)

Jouni Kerman <jouni@kerman.com>
References


See also vignette("rv").

See Also

rvfactor

Examples

```r
x <- rnorm(mean=1:12)
sx <- as.rvsummary(x)
print(sx) # prints the summary of the rvsummary object
length(sx) # 12
dim(sx) # NULL
dim(sx) <- c(3,4) #
dimnames(sx) <- list(1:3, 1:4)
names(sx) <- 1:12 #
print(sx) # prints the names and dimnames as well
```

**rvt**

*Generate Random Variables from a Student-t Sampling Model*

Description

Generates a random variable from a Student-t sampling model.

Usage

```r
rvt(n=1, mu=0, scale=1, df, ncp, Sigma)
```

Arguments

- `n` integer, number of scalars to generate
- `mu` location, may be a rv
- `scale` scale, may be a rv
- `ncp` non-centrality parameter
- `df` degrees of freedom, may be a rv
- `Sigma` (optional) scaling matrix for multivariate generation

Details

This function generates both univariate (independent and identically distributed) Student-t random variables and multivariate Student-t distributed vectors (with a given scaling matrix).

For details of the parameters, see the entry on mvt in the mvtnorm package.
rvunif

Note
If any of the arguments are random, the resulting simulations may have non-t marginal distributions.

Author(s)
Jouni Kerman <jouni@kerman.com>

References
See also vignette("rv").

Examples
df <- 3
x <- rvt(n=1, df=df)
y <- rvnorm(1)/sqrt(rvchisq(1, df=df)/df) # Same distribution as above
print(c(x,y))

rvunif Generate Random Vectors from a Uniform Sampling Model

Description
Generates random variables from a Uniform sampling model.

Usage
rvunif(n=1, min=0, max=1)

Arguments

n integer: number of scalars to generate
min lower limit of the distribution, (may be random)
max upper limit of the distribution, (may be random)

Author(s)
Jouni Kerman <jouni@kerman.com>

References
See also vignette("rv").
Examples

```r
y <- rvunif(1, min=rvunif(1)-1, rvunif(1)+1) # What marginal distribution does y have now?
```

---

**rvvar**  
*Variance of Components of Random Vectors*

**Description**

Computes variances of the simulations of components of a random vector of array.

**Usage**

```r
rvvar(x)
S3 method for class 'rv'
rvvar(x)
S3 method for class 'rvsummary'
rvvar(x)
rvsd(x)
S3 method for class 'rv'
rvsd(x)
S3 method for class 'rvsummary'
rvsd(x)
```

**Arguments**

- `x` an object

**Details**

`rvvar` computes the means of the simulations of all individual components of a random vector (rv) object.

That is, `rvvar` applies the function `var` to the vector of simulations of each component of `x`, thus computing "columnwise" variances of the matrix of simulations of `x`.

`rvsd` applies the function `sd` to the vector of simulations of each component of `x`, thus computing "columnwise" standard deviations of the matrix of simulations of `x`.

**Value**

A numeric vector or array (of the same dimension as that of `x`)

**Author(s)**

Jouni Kerman <jouni@kerman.com>
References


See also vignette("rv").

See Also

rvmin, rvmax, rvmedian, rvsd.

Examples

```r
x <- rnorm(mean=0, var=1:10)
rvar(x)
rvsd(x)
```

---

**simapply**

Apply a Function to Rows of Simulations of Random Vectors

**Description**

simapply applies a given function FUN to each row of the simulation matrix, returning an rv object.

**Usage**

```r
simapply(x, FUN, ...)
```

**Arguments**

- `x`: a random vector.
- `FUN`: a function.
- `...`: further arguments passed to FUN.

**Details**

simapply applies a given function to the rows of the simulation matrix of the given random vector. If the function accepts arrays, use rvmapply instead. If the function is to be applied to each component of the random vector separately (such as in rvmean), use rvsimapply instead.

Usually used in functions that implement an ’rv’-compatible numeric function.

**Value**

An rv object, representing the distribution of FUN(x, ...).
Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

Examples

```r
#
x <- rnorm(10)
simapply(x, mean) # Same result as that of mean(x).
```

sims

Retrieve the Simulations of Random Vectors

Description

Returns the simulation matrix for the random variable object x.

Usage

```r
sims(x, ...)
Default S3 method:
sims(x, ...)
S3 method for class 'rv'
sims(x, dimensions=FALSE, n.sims=getn sims(), ...)
S3 method for class 'rvsummary'
sims(x, dimensions=FALSE, ...)
```

Arguments

- `x`: a random variable object
- `n.sims`: (optional) number of simulations
- `dimensions`: logical, try to preserve the dimensions of x
- `...`: arguments passed on

Details

`sims` returns the matrix of simulations for a given random variable object x.

The first index of the matrix indicates the number of the simulation draw ("simulations are in rows").

Author(s)

Jouni Kerman <jouni@kerman.com>
References

See also vignette("rv").

Examples

```r
setnsims(n.sims=2500)
x <- rnorm(24)
dim(x) <- c(2,3,4)
dim(sims(x)) # 2500x24
dim(sims(x, dimensions=TRUE)) # 2500x2x3x4
```

solve.rv

Random Vectors

Description

solve.rv

Usage

```r
S3 method for class 'rv'
solve(a, b, ...)
```

Arguments

- `a`: a square random vector containing the coefficients of the linear system
- `b`: a square random vector giving the right-hand side(s) of the linear system
- `...`: further arguments passed to `solve`

Details

solve.rv is the rv-object compatible version of the function `solve`. For details of the function, see `solve`.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").
sort.rv

Distribution of Order Statistics of a Random Vector

Description

sort.rv computes the distribution of the order statistics of a random vector.

Usage

```r
S3 method for class 'rv'
sort(x, ...)
```

Arguments

- `x`: a random vector
- `...`: further arguments passed to `sort.rv`

Details

The result is the *distribution* of the order statistic of the given vector `x`: that is, the `sort` function is applied to each row of the matrix of simulations of `x` (`sims(x)`) and returned then in random vector form.

See `sort` for further details of the function `sort`.

Value

An `rv` object of the same length as `x`.

Author(s)

Jouni Kerman <jouni@kerman.com>

References


See also vignette("rv").

See Also

`sort`
splitbyname

Examples

#

splitbyname

Description

splitbyname is a utility function that splits the given vector based on the names of the components and returns a named list of arrays and vectors.

Usage

splitbyname(x)

Arguments

x a vector or a list with the name attributes set

Details

The names are supposed to be of the format 'name[index]', for example 'alpha[1,1]', 'beta[1]', etc. A name without brackets is equivalent to a name with '[1]'. The dimension attribute will not be set in case of vectors.

Value

A list of arrays and vectors. Missing entries in the arrays and vectors are filled in with NAs.

Author(s)

Jouni Kerman <jouni@kerman.com>

Examples

x <- structure(c(1,3), names=c("x[1,1]", "x[3,3]"))
splitbyname(x) # yields a list containing a 3x3 matrix
unlistrv

Flatten Lists Containing rv Objects

Description

Given a list structure x, unlistrv simplifies it to produce a vector which contains all the atomic components (containing rv objects) which occur in x.

Usage

unlistrv(x, recursive = TRUE, use.names = TRUE)

Arguments

x An R object, typically a list or vector (containing rv objects)
recursive logical. Should unlisting be applied to list components of x?
use.names logical. Should names be preserved? (now fixed to TRUE)

Details

This is the rv-compatible version of the function unlist.
Since unlist is not a generic function, the whole name unlistrv must be specified when calling the function when x is an ‘rv’ object.

Author(s)

Jouni Kerman <jouni@kerman.com>

References

See also vignette("rv").

See Also

unlist

Examples

x <- list(a=rvnorm(2), b=rvnorm(3))
print(unlistrv(x))
Index

!..rv (Math.rv), 25
*Topic aplot
  abline.rv, 4
  lines.rv, 24
  plot.rv, 33
  points.rv, 34
*Topic arith
  matmult.rv, 26
*Topic array
  matmult.rv, 26
*Topic classes
  as.double.rv, 7
  as.integer.rv, 8
  as.list.rv, 9
  as.logical.rv, 10
  as.rv.bugs, 11
  as.vector.rv, 12
  c, 13
  cbind.rv, 14
  constant, 15
  detachrv, 16
  Extract.rv, 17
  Extremes-rv, 18
  fuzzy, 19
  hist.rv, 20
  is.na.rv, 21
  Math.rv, 25
  mean.rv, 27
  median.rv, 28
  mlplot, 29
  numeric.rv, 31
  outer.rv, 32
  posterior, 36
  postsim, 37
  print.rv, 38
  quantile.rv, 39
  range.rv, 40
  rv, 42
  rv-package, 3
  rvarray, 43
  rvattr, 44
  rvbern, 45
  rvbeta, 46
  rvbinom, 47
  rvboot, 48
  rvcat, 49
  rvcauchy, 50
  rvchisq, 51
  rvci, 52
  rvconst, 53
  rvcov, 54
  rvcut, 55
  rvdens, 56
  rvdichet, 57
  rvdiscrete, 58
  rvempirical, 59
  rvexp, 60
  rvfactor, 60
  rvgamma, 62
  rvhist, 63
  rvifelse, 63
  rvinvchisq, 64
  rvmatch, 66
  rvmean, 67
  rvmultinom, 70
  rvchains, 71
  rvneff, 72
  rvnorm, 73
  rvsims, 74
  rvpar, 75
  rvpermut, 76
  rvpois, 77
  rvquantile, 79
  rvRhat, 80
  rvsample, 81
  rvsimapply, 82
  rvsims, 83
  rvsummary, 84
rvt, 86
rvunif, 87
rvvar, 88
sims, 90
solve.rv, 91
*Topic dist
rvmeanunif, 69
*Topic hplot
ivplot, 22
*Topic manip
aperm.rv, 5
apply.rv, 6
as.rv.stanfit, 12
rep.rv, 41
rvmapply, 65
simapply, 89
sort.rv, 92
splitbyname, 93
unlist.rv, 94
*Topic models
rvpredict, 78
[.rv (Extract.rv), 17
[.rvfactor (Extract.rv), 17
[.rvsummary (Extract.rv), 17
[<-.rv (Extract.rv), 17
[<-.rvsummary (Extract.rv), 17
%%*(matmult.rv), 26
%%.rv (matmult.rv), 26
%in% (rvmatch), 66
abline, 4, 66
abline.rv, 4
aperm, 5
aperm.rv, 5
apply, 6
apply.rv, 6
array, 43
as.constant (constant), 15
as.data.frame.rvsummary (rvsummary), 84
as.double.rv, 7
as.double.rvsummary (rvsummary), 84
as.integer.rv, 8
as.list.rv, 9
as.logical.rv, 8, 10
as.matrix.rv (rvarray), 43
as.numeric.rv (numeric.rv), 31
as.numeric.rvfactor (numeric.rv), 31
as.rv.rv, 42
as.rv.bugs, 11, 71
as.rv.rvfactor (rvfactor), 60
as.rv.stanfit, 12
as.rvfactor (rvfactor), 60
as.rvobj (rv), 42
as.rvsummary (rvsummary), 84
as.rvsummary.bugs (as.rv.bugs), 11
as.vector.rv, 12
c, 13
Cauchy, 50
cbind, 14
cbind.rv, 14
cc (c), 13
constant, 15
cummax.rv (Math.rv), 25
cummin.rv (Math.rv), 25
cumprod.rv (Math.rv), 25
cumsum.rv (Math.rv), 25
cut, 55
detachrv, 16
diag, 26
drop, 26
E (rvmean), 67
Extract.rv, 17
Extremes-rv, 18
fuzzy, 19
getnsims (rvnsims), 74
hist, 21
hist.rv, 20
ifelse, 64
impute<- (Extract.rv), 17
is.constant (constant), 15
is.fuzzy (fuzzy), 19
is.matrix.rv (rvarray), 43
is.na.rv, 21
is.numeric.rv (numeric.rv), 31
is.numeric.rvfactor (numeric.rv), 31
is.random (rv), 42
is.rv (rv), 42
is.rvfactor (rvfactor), 60
is.rvobj (rv), 42
is.rvsummary (rvsummary), 84
ivplot, 22
INDEX

lines.rv, 24, 35
mapply, 65, 66
Math.rv, 25
Math.rvsim(Math.rv), 25
matmult.rv, 26
matrix, 26, 43
max.rv(Extremes.rv), 18
mean.rv, 27, 68
median.rv, 28
min.rv(Extremes.rv), 18
mlplot, 29, 34, 44
NA, 40
numeric, 32
numeric.rv, 31
Ops, 26
Ops.rv(Math.rv), 25
Ops.rvsim(Math.rv), 25
outer.rv, 32
par, 29
plot.rv, 33
plot.rvssummary(plot.rv), 33
pmax.rv(Extremes.rv), 18
pmin.rv(Extremes.rv), 18
points.rv, 24, 34
posterior, 36, 37
postsim, 37
Pr(rvmean), 67
print.rv, 38
print.rvfactor(rvfactor), 60
print.rvssummary(rvssummary), 84
print.rvssummary.rvfactor(rvssummary), 84
quantile, 28
quantile.rv, 39, 40
range, 40
range.rv, 40
rbind, 14
rbind.rv(cbind.rv), 14
rep, 41
rep.rv, 41
rv, 42
rv-package, 3
rv.all.na(is.na.rv), 21
rv.any.na(is.na.rv), 21
rvarray, 43
rvattr, 44
rvattr<-(rvattr), 44
rvbern, 45
rvbeta, 46
rvbinom, 47
rvboot, 48
rvcat, 49
rvcauchy, 50
rvchisq, 51
rvci, 52
rvconst, 53
rvcov, 54
rvcut, 55
rvedens, 56
rvedirichlet, 57
rvediscrete, 58
rvempirical, 59
rvexp, 60
rvfactor, 38, 49, 55, 60, 86
rvgamma, 62
rvhist, 63
rvifelse, 63
rvinvchisq, 64
rvmapply, 65, 82, 89
rvmatch, 66
rvmatrix(rvarray), 43
rvmax, 68, 89
rvmax(Extremes.rv), 18
rvmean, 19, 27, 67, 89
rvmeanunif, 69
rvmedian, 19, 28, 68, 89
rvmedian(rvquantile), 79
rvmin, 68, 89
rvmin(Extremes.rv), 18
rvmultinom, 70
rvnbeta(rvbeta), 46
rvcchains, 71
rvneff, 72
rvngamma(rvgamma), 62
rvnorm, 73
rvnzsims, 74
rvpar, 75
rvperm, 76
rvpois, 77
rvpredict, 78
rvquantile, 39, 79
rvrange(Extremes.rv), 18
rvRhat, 80
rvsample, 81
rvsd, 68, 89
rvsd(rvvar), 88
rvsimapply, 82, 89
rvsims, 83
rvsummary, 84
rvt, 50, 86
rvtriang (rvmeanunif), 69
rvunif, 87
rvvar, 88
rvVectorize (rvmapply), 65

setnsims, 42
setnsims (rvnsims), 74
simapply, 66, 82, 89
sims, 90
solve, 66, 91, 92
solve.rv, 91
sort, 92
sort.rv, 92
splitbyname, 93
summary.rv, 38

unlist, 94
unlistrv, 94