Package ‘sac’

February 20, 2015

Version 1.0.1
Date 2009-02-25
Title Semiparametric Analysis of Changepoint
Author Zhong Guan <zguan@iusb.edu>
Maintainer Zhong Guan <zguan@iusb.edu>
Depends R (>= 1.4)
Description Semiparametric empirical likelihood ratio based test of changepoint with one-change or epidemic alternatives with data-based model diagnostic
Encoding latin1
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2009-02-25 09:29:25

R topics documented:

BootsChapt ... 2
BootsModelTest .. 4
CriticalValues ... 5
cumsum.test ... 6
plots ... 7
Pvalues ... 9
schapt ... 11
SemiparChangePoint .. 13

Index 15
BootsChapt
Bootstrap (Permutation) Test of Change-Point(s) with One-Change or Epidemic Alternative

Description

By resampling with(out) replacement from the original sample data, we can obtain bootstrap(permutation) versions of the test statistics. The \(p\)-values of the test(s) from the original data are approximated by the \(p\)-values of the bootstrap(permutation) version statistics.

Usage

```
BootsChapt(x, stat1, stat2 = NULL, B, replace = FALSE,
alternative = c("one.change", "epidemic"), adj.Wn = FALSE,
tol = 1.0e-7, maxit = 50, trace = FALSE,...)
```

Arguments

- **x**: a numeric vector or matrix containing the data, one row per observation;
- **stat1**: test statistic \(S_n\) for "one-change" alternative or \(V_n\) for "epidemic" alternative, output of `SemiparChangePoint`.
- **stat2**: test statistic \(W_n\) for "epidemic" alternative, output of `SemiparChangePoint`.
- **B**: number of resamples
- **replace**: a logical indicating whether bootstrap samples for bootstrap test of the change-point are selected with or without replacement, if `replace = FALSE` (default), corresponds to permutation test, otherwise, bootstrap test;
- **alternative**: a character string specifying the alternative hypothesis, must be one of "one-change" (default) or "epidemic". You can specify just the initial letter.
- **adj.Wn**: logical indicating if \(W_n\) should be adjusted or not for "epidemic" alternative.
- **tol**: the desired accuracy (convergence tolerance), an argument of `glm.control`.
- **maxit**: the maximum number of iterations, an argument of `glm.control`.
- **trace**: logical indicating if output should be produced for each iteration, an argument of `glm.control`.
- **...**: other arguments

Details

The procedure will fail when there is separation in the data in the sense of Albert \\& Anderson(1984, *Biometrika*) and Santner \\& Duffy (1986, *Biometrika*). In this case, the change-point(s) may be detected easily using nonparametric method based on cumsum. Now, this program does not check whether the data is separated.
Value

- `p.boots` bootstrap p-value of Sn for "one-change" alternative
- `p.boots.Vn` bootstrap p-value of Vn for "epidemic" alternative
- `p.boots.Wn` bootstrap p-value of Wn for "epidemic" alternative

Note

Default alternative is "one-change", even when `stat2` is not NULL. If `alternative` = "epidemic", both `stat1` and `stat2` should be provided. Statistic Wn need be adjusted only for one dimensional observations and if no bootstrap test is conducted. However, if Wn is already adjusted, you have to assign `adj.Wn = TRUE` to calculate the p-value of Wn.

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Guan, Z. Semiparametric Tests for Change-points with Epidemic Alternatives.

See Also

Examples

```r
require(sac) # load the package

# one-change alternative
k<-10
n<-20
x<-rnorm(n,0,1)
x[(k+1):n]<-x[(k+1):n]+1.5
T<-SemiparChangePoint(x, alternative = "one.change")$Sn
BootsChapt(x, T, B = 5)
  # Choose larger B to get better approximate p-value.
```
BootsModelTest

Description

Using bootstrap method to approximate the p-value of test of the model validity. Bootstrap samples are drawn from the semiparametric empirical distribution which are estimates of the underlying population distributions.

Usage

```r
BootsModelTest(x, k, m, B, Alpha, Beta, tol = 1.0e-7, maxit=50, trace=FALSE)
```

Arguments

- `x`: a numeric vector or matrix containing the data, one row per observation;
- `k`: the estimated change-point, output of `SemiparChangePoint`;
- `m`: the sample size for "one-change" alternative, or the estimated second change-point for "epidemic" alternative, an output of `SemiparChangePoint`;
- `B`: number of resamples;
- `Alpha`: estimated parameter α, output of `SemiparChangePoint`;
- `Beta`: estimated parameter β, output of `SemiparChangePoint`;
- `tol`: the desired accuracy (convergence tolerance), an argument of `glm.control`;
- `maxit`: the maximum number of iterations, an argument of `glm.control`;
- `trace`: logical indicating if output should be produced for each iteration, an argument of `glm.control`.

Value

- `Delta`: The test statistic of the model validity
- `Pvalue`: The bootstrapped p-value

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Guan, Z. Semiparametric Tests for Change-points with Epidemic Alternatives.
Critical Values

Description

Return the approximate critical values of the test statistics given level \(\alpha \).

Usage

\[
\text{Sn.alfa}(\alpha, n, d, \text{model}=c(\text{"parametric"}, \text{"semiparametric"}), \\
\quad \text{tol} = \text{.Machine}\$\text{double.eps}\times 0.25, \text{maxiter} = 1000) \\
\text{CV.Epidemic.Vn}(\alpha, d, \text{tol} = 1e-10) \\
\text{CV.Epidemic.Wn}(\alpha, \text{tol} = 1e-07)
\]

Arguments

- \(\alpha \): significance level
- \(n \): sample size
- \(\text{model} \): a character string specifying the model, must be one of \"parametric\" or \"semiparametric\" (default). You can specify just the initial letter
- \(d \): dimension of the data value
- \(\text{tol} \): the desired accuracy (convergence).
- \(\text{maxiter} \): the maximum number of iterations for \text{unroot}.

Details

Function \(\text{Sn.alfa} \) returns the critical value of \(Sn \) for one-change alternative. The functions \(\text{CV.Epidemic.Vn} \) and \(\text{CV.Epidemic.Wn} \) calculate critical values for \(Vn \) and \(Wn \).
Value

Critical values

Author(s)

Zhong Guan <zguan@iusb.edu>

References

See Also

schapt

Examples

```r
require(sac)  # load the package
alpha <- 0.05
n <- 20
d <- 1
Sn.alfa(alpha, n, d, model = "semiparametric")
CV.Epidemic.Vn(alpha, d)
CV.Epidemic.Wn(alpha)
```

cumsum.test Nonparametric Test for Change-Point with One-change or Epidemic Alternative

Description

Compute test statistic based on CUMSUM and change-point estimate

Usage

```r
cumsum.test(x, alternative = c("one.change", "epidemic"))
```

Arguments

- **x**: a numeric vector or matrix containing the data, one row per observation;
- **alternative**: a character string specifying the alternative hypothesis, must be one of "one-change" (default) or "epidemic". You can specify just the initial letter.

Value

- **Sn**: test statistic
- **k.hat**: estimated change-point
- **m.hat**: the second estimated change-point for epidemic alternative
Author(s)
Zhong Guan <zguan@iusbNedu>

References

See Also
cumsum

Examples

require(sac) #load the package
one-change alternative
k<-10
n<-30
x<-rnorm(n,0,1)
x[(k+1):n]<-x[(k+1):n]+1.5
cumsum.test(x, alternative = "one.change")
epidemic alternative
k<-10
m<-20
n<-30
x<-rnorm(n,0,1)
x[(k+1):m]<-x[(k+1):m]+1.5
cumsum.test(x, alternative = "epidemic")

Description
Plot and compare the empirical likelihood and semiparametric empirical likelihood distribution functions, plot loglikelihood function.

Usage
Graf.Diagnostic(x, k, m, Alpha, Beta, Color, LTY, xlab = "x", ylab = "Estimated DF's", main = "Model Diagnostic", OneLegend = TRUE, lgni1, lgni2, arw1, arw2, ...)
Plot.ll(x, ll, col, xaxis.lab = NULL, xlab = "k", ylab = "Loglikelihood", main = "Plot of Loglikelihood", ...)
Arguments

- **x**: a numeric vector or matrix containing the data, one row per observation;
- **ll**: loglikelihood function, output of `SemiparChangePoint`;
- **col**: color code or character string for the loglikelihood curve;
- **xaxis.lab**: a vector of character strings or numeric values to be placed at the tickpoints as labels of `axis`;
- **k**: the estimated change-point, output of `SemiparChangePoint`;
- **m**: = n, the sample size, for "one-change" alternative, or the estimated second change-point for "epidemic" alternative, an output of `SemiparChangePoint`;
- **Alpha**: estimated parameter α, output of `SemiparChangePoint`;
- **Beta**: estimated parameter β, output of `SemiparChangePoint`;
- **Color**: a vector of character strings or color codes for curves of estimated distribution functions \(\hat{F}, \tilde{F}, \hat{G} \) and \(\tilde{G} \);
- **LTY**: vector of lty's, LTY=c(lty1, lty2, lty3, lty4), corresponds to the above color codes;
- **xlab**: character string for x-axis label;
- **ylab**: character string for y-axis label;
- **main**: character string for main title;
- **OneLegend**: a logical indicating whether plot one or two legend;
- **lgnd1**: a numeric vector of two specify the position of the first legend box;
- **lgnd2**: a numeric vector of two specify the position of the second legend box, if OneLegend = FALSE;
- **arw1**: a numeric vector of four numbers indicating start and end positions of the first arrows point to curves;
- **arw2**: a numeric vector of four numbers indicating start and end positions of the second arrows point to curves;
- **...** other arguments of function `plot`;

Author(s)

Zhong Guan <zguan@iusb.edu>

References

See Also

- `schapt`
Examples

```r
require(sac) #load the package
k<-30
n<-80
x<-rnorm(n,0,1)
x[(k+1):n]<-x[(k+1):n]+1.5
res<-SemiparChangePoint(x, alternative = "one.change")
Plot.ll(x, res$l1, col="blue")

## Nile data with one change-point: the annual flows drop in 1898 which corresponds
## to k=28. It is believed to be caused by the building of the first Aswan dam.
if(! "package:sac" %in% search()) library(sac)
# if package sac has not been loaded, load it.
if(! "package:stats" %in% search()) library(stats)
data(Nile)
plot(Nile, type="p")
Nile.res<-SemiparChangePoint(Nile, alternative = "one.change")
Color<-c(1,2,3,4); LTY<-c(1,2,3,4)

## Plots of estimated distribution functions
Graf.Diagnostic(Nile, Nile.res$k.hat, length(Nile), Nile.res$alpha.hat,
    Nile.res$beta.hat, Color, LTY, xlab = "x", ylab = "Estimated DF's",
    main="Model Diagnostic for Nile Data", OneLegend = FALSE, lgn1 =
    c(1100, .0.15), lgn2 = c(600, .99), arw1=c(780, .93, 1010, .9),
    arw2 = c(1165, .15, 1015, .24))

## Plot of loglikelihood function
Plot.ll(Nile, Nile.res$l1, col = "blue")
Plot.ll(Nile, Nile.res$l1, col = "blue", xaxis.lab = seq(1871,1970, length = 100),
xlab = "Year")
```

The p-values of Test Statistics Based on Asymptotic Distribution

Description

Calculate the approximate p-values of the test statistics T_n, V_n and W_n using limit null distributions.

Usage

```r
p.OneChange(n, d, Sn)
p.Epidemic.Vn(Vn, d, tol = 1e-10)
p.Epidemic.Wn(Wn, tol = 1e-07)
```

Arguments

- **Sn**: test statistic S_n of the one-change alternative
- **Vn**: test statistic V_n of the epidemic alternative
 WN test statistic of the epidemic alternative
 n sample size
 d dimension of the data value
 tol the desired accuracy.

Value

 p.value p-value

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Guan, Z. Semiparametric Tests for Change-points with Epidemic Alternatives.

See Also

schapt, BootsChapt

Examples

require(sac) # load the package
one-change alternative
k<-10
n<-30
x<-rnorm(n,0,1)
x[(k+1):n]<-x[(k+1):n]+1.5
T<-SemiparChangePoint(x, alternative = "one.change")$Sn
p.OneChange(n, d=1, T)

epidemic alternative
k<-5
m<-10
n<-20
x<-rnorm(n,0,1)
x[(k+1):m]<-x[(k+1):m]+1.5
res<-SemiparChangePoint(x, alternative = "e")
V<-res$Vn; W<-res$Wn
p.Epidemic.Vn(V, d=1)
p.Epidemic.Wn(W)
Semiparametric Analysis of Changepoint

Description
Semiparametric empirical likelihood ratio based test of changepoint with one-change or epidemic alternatives with data-based model diagnostic

Usage
schapt(x, n.boots = 0, replace = FALSE, alternative = c("one.change", "epidemic"), conf.level = 0.95, adj.Wn = FALSE, model.test = FALSE, n.model.boots = 0, tol=1.0e-7, maxit=50,trace=FALSE,...)

Arguments
x a numeric vector or matrix containing the data, one row per observation;
n.boots number of bootstrap samples for bootstrap test of the change-point, if n.boots =0 , do not perform bootstrap test;
replace a logical indicating whether bootstrap samples for bootstrap test of the change-point are selected with or without replacement, if replace= FALSE (default), corresponds to permutation test, otherwise, bootstrap test;
alternative a character string specifying the alternative hypothesis, must be one of "one-change" (default) or "epidemic". You can specify just the initial letter. Epidemic alternative is also called square wave alternative in the literature.
conf.level confidence level.
adj.Wn logical indicating if Wn should be adjusted or not for "epidemic" alternative.
model.test a logical indicating whether the test of model validity is performed.
n.model.boots number of bootstrap samples for model test, if either n.model.boots = 0 or model.test=FALSE, then model test will not be performed.
tol the desired accuracy (convergence tolerance), an argument of glm.control.
maxit the maximum number of iterations, an argument of glm.control.
trace logical indicating if output should be produced for each iteration, an argument of glm.control.
... other future arguments

Details
Model: \(\log\{g(x)/f(x)\} = \exp\{\alpha + \beta' T(x)\} \), where \(f(x) \) and \(g(x) \) are the density (frequency) functions of the two hypothesized populations, and \(T(x) \) can be chosen as \(T(x) = x \) or \(T(x) = (x, x^2) \). The procedure will fail when there is separation in the data in the sense of Albert & Anderson(1984, *Biometrika*) and Santner & Duffy (1986, *Biometrika*). In this case, the changepoint(s) may be detected easily using nonparametric method based on cumsum. Currently, this function does not check whether the data is separated.
Value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.name</td>
<td>dataset name</td>
</tr>
<tr>
<td>parameter</td>
<td>sample size n and degree(s) of freedom of the df of Sn for "one-change" alternative</td>
</tr>
<tr>
<td>alternative</td>
<td>the alternative hypothesis</td>
</tr>
<tr>
<td>statistic</td>
<td>a list contains Sn for "one-change" alternative, Vn and Wn for "epidemic" alternative; also contains Delta if model test is performed</td>
</tr>
<tr>
<td>estimate</td>
<td>a list contains change-point(s) and alpha and beta</td>
</tr>
<tr>
<td>p.value</td>
<td>a list contains p-value(s), p(Sn), of Sn for "one-change" alternative, p(Vn) and p(Wn), of Vn and Wn, respectively, for "epidemic" alternative; also p.boots(model) of Delta if model test is performed, if bootstrap test(s) of the change-point(s) are performed, the it also contains the corresponding p-values, p.boots(Sn), p.boots(Vn) and p.boots(Wn) accordingly.</td>
</tr>
</tbody>
</table>

Note

Statistic Wn need be adjusted only for one dimensional observations and if no bootstrap test is conducted. If returned p-value is 0, this means that the p-value is less than 1.0e-7. There is an R package, called "strucchange", for testing structural change in linear regression models (see sctest).

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Guan, Z. Semiparametric Tests for Change-points with Epidemic Alternatives.

See Also

Graf.Diagnostic,Plot.11

Examples

require(sac) #load the package
one-change alternative
Nile data with one change-point: the annual flows drop in 1898.
It is believed to be caused by the building of the first Aswan dam.
if(! "package:sac" %in% search()) library(sac)
 #if package sac has not been loaded, load it.
if(! "package:stats" %in% search()) library(stats)
data(Nile)
plot(Nile, type="p")
schapt(Nile, alternative = "one.change")
Description

Calculate test statistics, loglikelihood function and estimate unknown parameters in the semiparametric model.

Usage

SemiparChangePoint(x, alternative = c("one.change", "epidemic"),
adj.Wn = FALSE, tol = 1e-07, maxit = 50, trace = FALSE, ...)

Arguments

- `x`: a numeric vector or matrix containing the data, one row per observation;
- `alternative`: a character string specifying the alternative hypothesis, must be one of "one-change" (default) or "epidemic". You can specify just the initial letter.
- `tol`: the desired accuracy (convergence tolerance), an argument of `glm.control`.
- `adj.Wn`: logical indicating if Wn should be adjusted or not for "epidemic" alternative.
- `maxit`: the maximum number of iterations, an argument of `glm.control`.
- `trace`: logical indicating if output should be produced for each iteration, an argument of `glm.control`.
- `...`: other future arguments

Details

Model: \(\log \{g(x)/f(x)\} = \exp\{\alpha + \beta T(x)\} \), where \(f(x) \) and \(g(x) \) are the density (frequency) functions of the two hypothesized populations, and \(T(x) \) can be chosen as \(T(x) = x \) or \(T(x) = (x, x^2) \). The procedure will fail when there is separation in the data in the sense of Albert & Anderson(1984, Biometrika) and Santner & Duffy (1986, Biometrika). In this case, the change-point(s) may be detected easily using nonparametric method based on cumsum. Currently, this function does not check whether the data is separated.

Value

- `k.hat`: change-point estimate
- `m.hat`: second change-point estimate for "epidemic" alternative
- `ll`: loglikelihood function
- `Sn`: likelihood ratio test statistic for "one-change" alternative
- `Vn`: test statistic based integral of weighted likelihood ratio for "epidemic" alternative
SemiparChangePoint

\[\text{Wn} \]
- Test statistic based supremum of weighted likelihood ratio for "epidemic" alternative

\[\alpha \text{hat} \]
- Estimate of \(\alpha \)

\[\beta \text{hat} \]
- Estimate of \(\beta \)

Note
- Statistic Wn need be adjusted only for one dimensional observations and if no bootstrap test is conducted.

Author(s)
- Zhong Guan <zguan@iusb.edu>

References

See Also

Examples
```r
require(sac) # load the package
# one-change alternative
k<-10
n<-30
x<-rnorm(n,0,1)
x[(k+1):n]<-x[(k+1):n]+1.5
SemiparChangePoint(x, alternative = "one.change")

# epidemic alternative
k<-5
m<-10
n<-20
x<-rnorm(n,0,1)
x[(k+1):m]<-x[(k+1):m]+1.5
SemiparChangePoint(x, alternative = "epidemic")
```
Index

*Topic **device**
plots, 7

*Topic **htest**
BootsChapt, 2
BootsModelTest, 4
CriticalValues, 5
Pvalues, 9
schapt, 11
SemiparChangePoint, 13

*Topic **models**
SemiparChangePoint, 13

*Topic **nonparametric**
cumsum.test, 6

*Topic **robust**
schapt, 11

axis, 8

BootsChapt, 2, 10
BootsModelTest, 4

CriticalValues, 5
cumsum, 7
cumsum.test, 6
CV.Epidemic.Vn (CriticalValues), 5
CV.Epidemic.Wn (CriticalValues), 5

glm.control, 2, 4, 11, 13
Graf.Diagnostic, 12
Graf.Diagnostic (plots), 7

p.Epidemic.Vn, 3, 14
p.Epidemic.Vn (Pvalues), 9
p.Epidemic.Wn, 3, 14
p.Epidemic.Wn (Pvalues), 9
p.OneChange, 3, 14
p.OneChange (Pvalues), 9
Plot.11, 12
Plot.11 (plots), 7
plots, 7
Pvalues, 9

schapt, 3, 5, 6, 8, 10, 11, 14
sctest, 12
SemiparChangePoint, 2–5, 8, 13
Sn.alfa (CriticalValues), 5