Unequal probability sampling designs

December 22, 2016

1) Some examples of using maximum entropy sampling design and related functions:

a) First example
Sample of Belgian municipalities, sample size 50

```
> data(belgianmunicipalities)
> attach(belgianmunicipalities)
> n=50
```

Inclusion probabilities proportional to the 'averageincome' variable

```
> pik=inclusionprobabilities(averageincome,n)
```

Draw a sample

```
> s=UPmaxentropy(pik)
```

The sample is

```
> as.character(Commune[s==1])
```

Joint inclusion probabilities

```
> pi2=UPmaxentropypi2(pik)
```

Check the result

```
> rowSums(pi2)/pik/n
```

b) Second example
Selection of samples from Belgian municipalities data, sample size 50. Once matrix q is computed, a sample is quickly selected. Simulations can be run to compare the results.
> data(belgianmunicipalities)
> attach(belgianmunicipalities)
> pik=inclusionprobabilities(averageincome,50)
> pik=pik[pik!=1]
> n=sum(pik)
> pikt=UPMEpiktildefrompik(pik)
> w=pikt/(1-pikt)
> q=UPMEqfromw(w,n)

Draw a sample using the q matrix

> UPMEsfromq(q)
>
Simulations to check the sample selection; the difference between pik and the computed inclusion prob. tt is almost 0.

> sim=10000
> N=length(pik)
> tt=rep(0,N)
> for(i in 1:sim) tt = tt+UPMEsfromq(q)
> tt=tt/sim
> max(abs(tt-pik))

2) This is an example of unequal probability (UP) sampling functions: selection of samples using the Belgian municipalities data set, with equal or unequal probabilities, and study of the Horvitz-Thompson estimator accuracy using boxplots. The following sampling schemes are used: Poisson, random systematic, random pivotal, Tillé, Midzuno, systematic, pivotal, and simple random sampling without replacement. Monte Carlo simulations are used to study the accuracy of the Horvitz-Thompson estimator of a population total. The aim of this example is to demonstrate the effect of the auxiliary information incorporation in the sampling design. We use:

- some π ps sampling designs with Horvitz-Thompson estimation, using in the sampling design the information on size measures of population units;
- simple random sampling without replacement with Horvitz-Thompson estimation, where no auxiliary information is used.

> b=data(belgianmunicipalities)
> pik=inclusionprobabilities(belgianmunicipalities$Tot04,200)
> N=length(pik)
> n=sum(pik)

Number of simulations (for an accurate result, increase this value to 10000):

> sim=10
> ss=array(0,c(sim,8))
Defines the variable of interest:

\[y = \text{belgianmunicipalities}\$\text{TaxableIncome} \]

Simulation and computation of the Horvitz-Thompson estimator:

\[
\begin{align*}
> & \text{ht} = \text{numeric}(8) \\
> & \text{for}(i \in 1:\text{sim}) \\
+ & \{ \\
+ & \text{cat(}"\text{Step },i,"\n") \\
+ & s = \text{UPpoisson}(\text{pik}) \\
+ & \text{ht}[1] = \text{HTestimator}(y[s==1], \text{pik}[s==1]) \\
+ & s = \text{UPrandomsystematic}(\text{pik}) \\
+ & \text{ht}[2] = \text{HTestimator}(y[s==1], \text{pik}[s==1]) \\
+ & s = \text{UPrandompivotal}(\text{pik}) \\
+ & \text{ht}[3] = \text{HTestimator}(y[s==1], \text{pik}[s==1]) \\
+ & s = \text{UPtille}(\text{pik}) \\
+ & \text{ht}[4] = \text{HTestimator}(y[s==1], \text{pik}[s==1]) \\
+ & s = \text{UPmidzuno}(\text{pik}) \\
+ & \text{ht}[5] = \text{HTestimator}(y[s==1], \text{pik}[s==1]) \\
+ & s = \text{UPsystematic}(\text{pik}) \\
+ & \text{ht}[6] = \text{HTestimator}(y[s==1], \text{pik}[s==1]) \\
+ & s = \text{UPpivotal}(\text{pik}) \\
+ & \text{ht}[7] = \text{HTestimator}(y[s==1], \text{pik}[s==1]) \\
+ & s = \text{srswor}(n, N) \\
+ & \text{ht}[8] = \text{HTestimator}(y[s==1], \text{rep}(n/N, n)) \\
+ & \text{ss}[i,] = \text{ht} \\
+ & \}
\end{align*}
\]

Boxplots of the estimators:

\[
> \text{colnames}(\text{ss}) \leftarrow \\
+ \text{c}("\text{poisson", }"\text{rsyst", }"\text{pivotal", }"\text{tille", }"\text{midzuno", }"\text{syst", }"\text{pivotal", }"\text{srswor")} \\
> \text{boxplot(data.frame(ss), las=3)} \\
> \]