Package ‘sbgcop’

February 20, 2015

Title Semiparametric Bayesian Gaussian copula estimation and imputation
Version 0.975
Date 2010-03-08
Author Peter Hoff
Maintainer Peter Hoff <hoff@stat.washington.edu>
Description This package estimates parameters of a Gaussian copula, treating the univariate marginal distributions as nuisance parameters as described in Hoff(2007). It also provides a semiparametric imputation procedure for missing multivariate data.
License GPL (>= 2)
URL http://www.stat.washington.edu/hoff
Repository CRAN
Date/Publication 2012-10-29 08:59:38
NeedsCompilation no

R topics documented:

sbgcop-package .. 2
ldmvnorm .. 2
plotci.sA ... 3
qM.sM .. 4
rwish .. 4
sbgcop.mcmc ... 5
sR.sC ... 6

Index 8
semiparametric Bayesian Gaussian copula estimation and imputation

Description

This package estimates parameters of a Gaussian copula, treating the univariate marginal distributions as nuisance parameters as described in Hoff (2007). It also provides a semiparametric imputation procedure for missing multivariate data.

Details

Package: sbgcop
Type: Package
Version: 0.975
Date: 2010-03-08
License: GPL Version 2 or later

This function produces MCMC samples from the posterior distribution of a correlation matrix, using a scaled inverse-Wishart prior distribution and an extended rank likelihood. It also provides imputation for missing values in a multivariate dataset.

Author(s)

Peter Hoff <hoff@stat.washington.edu>

References

Hoff (2007) “Extending the rank likelihood for semiparametric copula estimation”

Examples

```r
fit<-sbgcop.mcmc(swiss)
summary(fit)
plot(fit)
```

log multivariate normal density

Description

Computes the log of the multivariate normal density
Usage

ldmvnorm(Y, S)

Arguments

Y an n x p matrix
S a p x p positive definite matrix

Details

This function computes the log density of the data matrix Y under the model that the rows are independent samples from a mean-zero multivariate normal distribution with covariance matrix S.

Value

A real number.

Author(s)

Peter Hoff

Examples

Y <- matrix(rnorm(9*7), 9, 7)
ldmvnorm(Y, diag(7))

plotci.sA

Plot Confidence Bands for Association Parameters

Description

Plots 95 parameters

Usage

plotci.sA(sA, ylabs = colnames(sA[, 1]), mgp = c(1.75, 0.75, 0))

Arguments

sA a p x p x nsamp array
ylabs a p x 1 vector of names for plotting labels
mgp margin parameters

Author(s)

Peter Hoff
Matrix Quantiles

Description
Computes quantiles along the third dimension of a 3-d array.

Usage
qm.sm(smL quantiles = c(0.025, 0.5, 0.975))

Arguments

- **sm**: an m x n x s array
- **quantiles**: quantiles to be computed

Value
an array of dimension m x n x l, where l is the length of quantiles

Author(s)
Peter Hoff

Sample from the Wishart Distribution

Description
Generate a random sample from the Wishart distribution.

Usage
rwish(S0, nu)

Arguments

- **S0**: a positive definite matrix
- **nu**: a positive integer

Details
Return the sum of nu i.i.d. rank-one matrices generated as z%*%t(z), where z is a sample from a multivariate normal distribution with covariance S0. The resulting random variable has mean nu*S0.
Value

a positive definite matrix.

Author(s)

Peter Hoff

sbgcop.mcmc

Semiparametric Bayesian Gaussian copula estimation and imputation

Description

sbgcop.mcmc is used to semiparametrically estimate the parameters of a Gaussian copula. It can be used for posterior inference on the copula parameters, and for imputation of missing values in a matrix of ordinal and/or continuous values.

Usage

```r
sbgcop.mcmc(y, S0 = diag(dim(Y)[2]), n0 = dim(Y)[2] + 2, nsamp = 100,
    odens = max(1, round(nsamp/1000)),
    impute=any(is.na(Y)),
    plugin.threshold=100,
    plugin.marginal=(apply(Y,2,function(x){ length(unique(x))}>plugin.threshold),
    seed = 1, verb = TRUE)
```

Arguments

- **Y**
an n x p matrix. Missing values are allowed.
- **S0**
a p x p positive definite matrix
- **n0**
a positive integer
- **nsamp**
number of iterations of the Markov chain.
- **odens**
output density: number of iterations between saved samples.
- **impute**
save posterior predictive values of missing data(TRUE/FALSE)?
- **plugin.threshold**
if the number of unique values of a variable exceeds this integer, then plug-in the empirical distribution as the marginal.
- **plugin.marginal**
a logical of length p. Gives finer control over which margins to use the empirical distribution for.
- **seed**
an integer for the random seed
- **verb**
print progress of MCMC(TRUE/FALSE)?
Details

This function produces MCMC samples from the posterior distribution of a correlation matrix, using a scaled inverse-Wishart prior distribution and an extended rank likelihood. It also provides imputation for missing values in a multivariate dataset.

Value

An object of class psgc containing the following components:

- **C.psamp**: an array of size p x p x nsamp/odens, consisting of posterior samples of the correlation matrix.
- **y.pmean**: the original datamatrix with imputed values replacing missing data
- **Y.impute**: an array of size n x p x nsamp/odens, consisting of copies of the original data matrix, with posterior samples of missing values included.
- **LPC**: the log-probability of the latent variables at each saved sample. Used for diagnostic purposes.

Author(s)

Peter Hoff

References

http://www.stat.washington.edu/hoff/

Examples

```r
fit<-sbgcop.mcmc(swiss)
summary(fit)
plot(fit)
```

sR.sC

Compute Regression Parameters

Description

Compute an array of regression parameters from an array of correlation parameters.

Usage

```r
sR.sC(sC)
```

Arguments

- **sC**: a p x p x nsamp array of, made up of nsamp correlation matrices.
Details

For each of the nsamp correlation matrices C, a matrix of regression parameters is computed via
\[R[j,-j] <- C[j,-j] \times \text{solve}(C[-j,-j]) \]

Value

a p x p x nsamp array of regression parameters.

Author(s)

Peter Hoff
Index

*Topic array
 plotci.sa, 3
 qM.sm, 4
 sR.sc, 6

*Topic datagen
 rwish, 4

*Topic distribution
 ldmvnorm, 2
 rwish, 4

*Topic models
 sbgcop.mcmc, 5

*Topic multivariate
 ldmvnorm, 2
 qM.sm, 4
 rwish, 4
 sbgcop-package, 2
 sbgcop.mcmc, 5
 sR.sc, 6

*Topic regression
 sR.sc, 6

ldmvnorm, 2

plot.psgc(sbgcop.mcmc), 5
plotci.sa, 3
print.sum.psgc(sbgcop.mcmc), 5
qM.sm, 4
rwish, 4

sbgcop(sbgcop-package), 2
sbgcop-package, 2
sbgcop.mcmc, 5
sR.sc, 6
summary.psgc(sbgcop.mcmc), 5

8