Package ‘scatterplot3d’
April 22, 2017

Version 0.3-40
Date 2017-04-22
Title 3D Scatter Plot
Author Uwe Ligges <ligges@statistik.tu-dortmund.de>, Martin Maechler, Sarah Schnackenberg
Maintainer Uwe Ligges <ligges@statistik.tu-dortmund.de>
Description Plots a three dimensional (3D) point cloud.
Depends R (>= 2.7.0)
License GPL-2
Encoding latin1
Imports grDevices, graphics, stats
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-22 16:17:10 UTC

R topics documented:

scatterplot3d .. 1

Index

scatterplot3d 3D Scatter Plot

Description

Plots a three dimensional (3D) point cloud.
Usage

scatterplot3d(x = NULL, y = NULL, z = NULL, color = par("col"), pch = par("pch"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, zlab = NULL, scale.y = 1, angle = 40,
axis = TRUE, tick.marks = TRUE, label.tick.marks = TRUE,
x.ticklabs = NULL, y.ticklabs = NULL, z.ticklabs = NULL,
y.margin.add = 0, grid = TRUE, box = TRUE, lab = par("lab"),
lab.z = mean(lab[1:2]), type = "p", highlight.3d = FALSE,
mar = c(5, 3, 4, 3) + 0.1, bg = par("bg"), col.axis = par("col.axis"),
col.grid = "grey", col.lab = par("col.lab"),
cex.symbols = par("cex"), cex.axis = 0.8 * par("cex.axis"),
cex.lab = par("cex.lab"), font.axis = par("font.axis"),
font.lab = par("font.lab"), lty.axis = par("lty"),
lty.grid = par("lty"), lty.hide = NULL, lty.hplot = par("lty"),
log = "", asp = NA, ...)

Arguments

x the coordinates of points in the plot.
y the y coordinates of points in the plot, optional if x is an appropriate structure.
z the z coordinates of points in the plot, optional if x is an appropriate structure.
color colors of points in the plot, optional if x is an appropriate structure. Will be ignored if highlight.3d = TRUE.
pch plotting "character", i.e. symbol to use.
main an overall title for the plot.
sub sub-title.
xlim, ylim, zlim the x, y and z limits (min, max) of the plot. Note that setting enlarged limits may not work as exactly as expected (a known but unfixed bug).
xlab, ylab, zlab titles for the x, y and z axis.
scale.y scale of y axis related to x- and z axis.
angle angle between x and y axis (Attention: result depends on scaling).
axis a logical value indicating whether axes should be drawn on the plot.
tick.marks a logical value indicating whether tick marks should be drawn on the plot (only if axis = TRUE).
label.tick.marks a logical value indicating whether tick marks should be labeled on the plot (only if axis = TRUE and tick.marks = TRUE).
x.ticklabs, y.ticklabs, z.ticklabs vector of tick mark labels.
y.margin.add add additional space between tick mark labels and axis label of the y axis
grid a logical value indicating whether a grid should be drawn on the plot.
box a logical value indicating whether a box should be drawn around the plot.
lab

a numerical vector of the form c(x, y, len). The values of x and y give the
(approximate) number of tickmarks on the x and y axes.

lab.z

the same as lab, but for z axis.

type

character indicating the type of plot: "p" for points, "l" for lines, "h" for vertical
lines to x-y-plane, etc.

highlight.3d

points will be drawn in different colors related to y coordinates (only if type = "p"

or type = "h", else color will be used). On some devices not all colors can be displayed. In this case try the postscript
device or use highlight.3d = FALSE.

mar

A numerical vector of the form c(bottom, left, top, right) which gives the lines
of margin to be specified on the four sides of the plot. See section Values on
how to change the setting back to the default / previous setting.

bg

background (fill) color for the open plot symbols given by pch = 21:25.

col.axis, col.grid, col.lab

colour to be used for axis / grid / axis labels.

cex.symbols, cex.axis, cex.lab

cex to be used for point symbols, axis annotation, labels relative
to the current.

font.axis, font.lab

cex to be used for axis annotation / labels.

lty.axis, lty.grid

cex to be used for axis / grid.

lty.hide

cex to be used for axis / grid.

lty.hplot

cex to be used for axis / grid.

log

Not yet implemented! A character string which contains "x" (if the x axis is to
be logarithmic), "y", "z", "xy", "xz", "yz", "xyz".

asp

numeric, giving the aspect ratio z/x or z/y, see ‘Note’.

... more graphical parameters can be given as arguments, pch = 16 or pch = 20
may be nice.

Value

xyz.convert

function which converts coordinates from 3D (x, y, z) to 2D-projection (x, y) of
scatterplot3d. Useful to plot objects into existing plot.

points3d

function which draws points or lines into the existing plot.

plane3d

function which draws a plane into the existing plot: plane3d(Intercept, x.coef = NULL, y.coef = NULL, z.coef = NULL, lty.box = "dashed", lty.lines = NULL, draw_lines = TRUE, draw_polygon = FALSE, polygon_args = NULL). Instead of Intercept a vector containing 3 elements or an (g)lm object can be
specified. The argument lty.box allows to set a different line style for the intersecting lines in the box’s walls. The arguments draw_lines and draw_polygon
allow for choosing whether to represent the plane via line segments or as a
solid surface, respectively. The list in polygon_args collects arguments to be
passed to the underlying polygon call that draws a solid (or transparent) plane
if draw_polygon=TRUE.
scatterplot3d

box3d function which “refreshes” the box surrounding the plot.

par.mar As the function modifies the par("mar") settings of the current device and needs to keep these in case you add elements to the plot later on, you can change these back via par(object$par.mar) in case you want to add more plots with default margins to the current device.

Note

Some graphical parameters should only be set as arguments in scatterplot3d but not in a previous par() call. One of these is mar, which is also non-standard in another way: Users who want to extend an existing scatterplot3d graphic with another function than points3d, plane3d or box3d, should consider to set par(mar = c(b, l, t, r)) to the value of mar used in scatterplot3d, which defaults to c(5, 3, 4, 3) + 0.1.

Other par arguments may be split into several arguments in scatterplot3d, e.g., for specifying the line type. And finally some of par arguments do not apply here, e.g., many of those for axis calculation. So we recommend to try the specification of graphical parameters at first as arguments in scatterplot3d and only if needed as arguments in previous par() call.

If asp is a finite positive value then the window is set up so that one data unit in the x or y direction (the one that ist plotted horizontally - depends on angle-) is equal in length to asp × one data unit in the z direction. The variation of asp is only reasonable if the default values x.ticklabs=NULL, y.ticklabs=NULL, z.ticklabs=NULL are not changed.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Martin Maechler, Sarah Schnackenberg

References

See Also

persp, plot, par.

Examples

On some devices not all colors can be displayed.
Try the postscript device or use highlight.3d = FALSE.

example 1
z <- seq(-10, 10, 0.01)
x <- cos(z)
y <- sin(z)
scatterplot3d(x, y, z, highlight.3d=TRUE, col.axis="blue",
col.grid="lightblue", main="scatterplot3d - 1", pch=20)

example 2
temp <- seq(-pi, 0, length = 50)
x <- c(rep(1, 50) %*% t(cos(temp)))
```r
y <- c(cos(temp) %% t(sin(temp)))
z <- c(sin(temp) %% t(sin(temp)))
scatterplot3d(x, y, z, highlight.3d=TRUE,
col.axis="blue", col.grid="lightblue",
main="scatterplot3d - 2", pch=20)

## example 3
temp <- seq(-pi, 0, length = 50)
x <- c(rep(1, 50) %% t(cos(temp)))
y <- c(cos(temp) %% t(sin(temp)))
z <- 10 * c(sin(temp) %% t(sin(temp)))
color <- rep("green", length(x))
temp <- seq(-10, 10, 0.01)
x <- c(x, cos(temp))
y <- c(y, sin(temp))
z <- c(z, temp)
color <- c(color, rep("red", length(temp)))
scatterplot3d(x, y, z, color, pch=20, zlim=c(-2, 10),
main="scatterplot3d - 3")

## example 4
my.mat <- matrix(runif(25), nrow=5)
dimnames(my.mat) <- list(LETTERS[1:5], letters[11:15])
my.mat # the matrix we want to plot ...
s3d.dat <- data.frame(cols=as.vector(col(my.mat)),
rows=as.vector(row(my.mat)),
value=as.vector(my.mat))
scatterplot3d(s3d.dat, type="h", lwd=5, pch=" ",
x.ticklabs=colnames(my.mat), y.ticklabs=rownames(my.mat),
color=grey(25:1/40), main="scatterplot3d - 4")

## example 5
data(trees)
s3d <- scatterplot3d(trees, type="h", highlight.3d=TRUE,
angle=55, scale.y=0.7, pch=16, main="scatterplot3d - 5")
# Now adding some points to the "scatterplot3d"
s3d$points3d(seq(10,20,2), seq(85,60,-5), seq(60,10,-10),
col="blue", type="h", pch=16)
# Now adding a regression plane to the "scatterplot3d"
attach(trees)
my.lm <- lm(Volume ~ Girth + Height)
s3d$plane3d(my.lm, lty.box= "solid")

## example 6; by Martin Maechler
cubedraw <- function(res3d, min = 0, max = 255, cex = 2, text. = FALSE)
{
  ## Purpose: Draw nice cube with corners
  cube01 <- rbind(c(0,0,1), 0, c(1,0,0), c(1,1,0), 1, c(0,1,1), # < 6 outer
c(1,0,1), c(0,1,0)) # <- "inner": fore- & back-ground
cub <- min + (max-min) * cube01
  ## visible corners + lines:
  res3d$points3d(cub[c(1:6,1,7,3,7,5) ,], cex = cex, type = 'b', lty = 1)
}
```
```r
## hidden corner + lines
res3d$points3d(cub[c(2,8,4,8,6),], cex = cex, type = 'b', lty = 3)
if(text.)## debug
text(res3d$xyz.convert(cub), labels=1:nrow(cub), col='tomato', cex=2)
}
## V aI the named colors in rL i.e. colors()
cc <- colors()
crgb <- t(col2rgb(cc))
par(xpd = TRUE)
rr <- scatterplot3d(crgb, color = cc, box = FALSE, angle = 24,
   xlim = c(-50, 300), ylim = c(-50, 300), zlim = c(-50, 300))
cubedraw(rr)
## V bI the rainbow colors from rainbowHRP1I
rbc <- rainbow(201)
Rrb <- t(col2rgb(rbc))
rR <- scatterplot3d(Rrb, color = rbc, box = FALSE, angle = 24,
   xlim = c(-50, 300), ylim = c(-50, 300), zlim = c(-50, 300))
cubedraw(rR)
rR$points3d(Rrb, col = rbc, pch = 16)
```
Index

*Topic hplot
 scatterplot3d, 1

par, 4
persp, 4
plot, 4
polygon, 3

scatterplot3d, 1