Package ‘sddpack’

February 20, 2015

Type Package
Title Semidiscrete Decomposition
Version 0.9
Date 2009-06-12
Author Tamara G. Kolda, Dianne P. O’Leary
Maintainer Eric Sun <esun@cs.stanford.edu>
Description The semidiscrete decomposition (SDD) approximates a matrix as a weighted sum of outer products formed by vectors with entries constrained to be in the set {-1, 0, 1}.
License GPL-2
LazyLoad yes
Repository CRAN
Date/Publication 2012-10-29 08:59:39
NeedsCompilation no

R topics documented:

- sddpack-package .. 1
- sdd .. 2
- sddsolve ... 3

Index 5

- sddpack-package Semidiscrete Decomposition

Description
The semidiscrete decomposition (SDD) approximates a matrix as a weighted sum of outer products formed by vectors with entries constrained to be in the set {-1, 0, 1}.

Details

1
Author(s)

Tamara G. Kolda, Dianne P. O’Leary (Matlab code) Eric Sun <esun@cs.stanford.edu> (Ported to R)

References

http://www.cs.umd.edu/~oleary/SDDPACK/#authors

Examples

A = matrix(rnorm(100), nrow=10)
sdd(A)

sdd

Semidiscrete Decomposition

Description

The semidiscrete decomposition (SDD) approximates a matrix as a weighted sum of outer products formed by vectors with entries constrained to be in the set \{-1, 0, 1\}.

Usage

sdd(A, kmax = 100, alphamin = 0.01, lmax = 100, rhomin = 1e-20)

Arguments

- **A** matrix of values on which to run sdd
- **kmax** number of outer-loop iterations (see References)
- **alphamin** progress check (see References)
- **lmax** number of inner-loop iterations (see References)
- **rhomin** threshold test (See References)
Details

The semidiscrete decomposition (SDD) approximates a matrix as a weighted sum of outer products formed by vectors with entries constrained to be in the set \{-1, 0, 1\}. It is useful for image compression and for latent semantic indexing (LSI) in information retrieval. The primary advantage of the SDD over other types of matrix approximations such as the truncated singular value decomposition (SVD) is that it typically provides a more accurate approximation for far less storage. The package has been ported from Matlab code given on http://www.cs.umd.edu/~oleary/SDDPACK/. See the webpage for full documentation.

Value

- **x**: matrix of X’s, where A is approximately equal to $x \ast \text{diag}(d) \ast y$
- **d**: vector of D’s, where A is approximately equal to $x \ast \text{diag}(d) \ast y$
- **y**: matrix of Y’s, where A is approximately equal to $x \ast \text{diag}(d) \ast y$

Note

Ported to R by Eric Sun <esun@cs.stanford.edu>

Author(s)

Tamara G. Kolda, Dianne P. O’Leary (Matlab code)

References

http://www.cs.umd.edu/~oleary/SDDPACK/

Examples

```r
A = matrix(rnorm(100), nrow=10)
sdd(A)
```

sddsolve

Helper function for sdd

Description

Helper function for sdd. Not to be called directly.

Usage

`sddsolve(s, m)`
Arguments

s matrix of values
m number of rows

Details

Helper function for sdd. Not to be called directly.

Value

x
imax
fmax

Note

Not to be called directly.

Author(s)

Tamara G. Kolda, Dianne P. O’Leary
Index

*Topic package
 sddpack-package, 1

sdd, 2
sddpack (sddpack-package), 1
sddpack-package, 1
sddsolve, 3