Package ‘siar’

February 20, 2015

Type Package
Title Stable Isotope Analysis in R
Version 4.2
Date 2013-4-23
Depends hdrcde, coda, MASS, bayesm, mnormt, spatstat
Author Andrew Parnell and Andrew Jackson
Maintainer Andrew Parnell <Andrew.Parnell@ucd.ie>
Description This package takes data on organism isotopes and fits a Bayesian model to their dietary habits based upon a Gaussian likelihood with a mixture dirichlet-distributed prior on the mean. It also includes SiBER metrics. See siardemo() for an example. Version 4.1.2 contains bug fixes to allow more than isotope numbers other than 2. Version 4.2 fixes a bug that stopped siar working on 64-bit systems
License GPL (>= 2)
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2013-04-23 16:50:07

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>siar-package</td>
<td>2</td>
</tr>
<tr>
<td>allgroups</td>
<td>4</td>
</tr>
<tr>
<td>bayesMVN</td>
<td>5</td>
</tr>
<tr>
<td>bayestwoNorm</td>
<td>5</td>
</tr>
<tr>
<td>concdepdemo</td>
<td>6</td>
</tr>
<tr>
<td>convexhull</td>
<td>7</td>
</tr>
<tr>
<td>correctionsdemo</td>
<td>7</td>
</tr>
<tr>
<td>geese1demo</td>
<td>8</td>
</tr>
<tr>
<td>geese2demo</td>
<td>8</td>
</tr>
<tr>
<td>hullarea</td>
<td>9</td>
</tr>
</tbody>
</table>
Stable Isotope Analysis in R.

Description

This package takes data on animal isotopes and fits a Bayesian model to their dietary habits based upon a Gaussian likelihood with a dirichlet prior mixture on the mean. The main function, siarmcmcdirichletv4(), allows the user to specify the data and choose the size of the MCMC run. A wrapper for the package, siarmenu() gives a walkthrough of all the functions contained in the package and produces some pretty plots. Some example data on Geese plasma is included for illustration.
Details
Package: siar
Type: Package
Version: 4.2
Date: 2010-04-22
License: GPL (>= 2)

For a demo of how to use the package, type siarmenu() and then choose option 9.

Author(s)
Andrew Parnell <Andrew.Parnell@tcd.ie>

See Also
 siarmenu siarmcmcdirichletv4

Examples
 # see siarmenu()

allgroups

The entire set of Geese isotope data

Description
A 5 column matrix containing isotopic estimates for 251 geese collected at 8 different time points. The first column indicates the time point group, the second and third are d15N (Nitrogen) and d13C (Carbon) isotopic values for the Geese plasma, the third and fourth are d15N and d13C values for the Geese cells. Note that these are raw values; they have not undergone fractionation correction.

Usage
 data(allgroups)

Format
A data frame with 251 observations on the following 5 variables.
 Group Group number / time point
 d15NP1 d15N plasma
 d13CP1 d13C plasma
 d15NCe d15N cells
 d13Cce d13C cells

Examples
 # see siarmenu() and option 9 for a demo using part of this data
bayesMVN | Bayesian MVN

Description
Fit a Multivariate Normal distribution to bivariate data using Bayesian Inference. Uses the function `rmultireg` to fit the model to the data.

Usage
bayesMVN(x, y, R=10^4)

Arguments
- x: A vector containing the x coordinates of the data.
- y: A vector containing the y coordinates of the data.
- R: The number of posterior draws to make. Defaults to 10^4.

Value
- b: The posterior draws of the estimated means.
- S: The posterior draws of the estimated correlation matrix sigma.

Author(s)
Andrew Jackson

bayestwoNorm | Bayesian Independent Normal Distributions

Description
Fit two independent Normal distributions to bivariate data using Bayesian Inference. Uses the function `runireg` to fit the model to the data.

Usage
bayestwoNorm(xx, yy, R=10^4)

Arguments
- xx: A vector containing the x coordinates of the data.
- yy: A vector containing the y coordinates of the data.
- R: The number of posterior draws to make. Defaults to 10^4.
Value

b The posterior draws of the estimated independent means.
S The posterior draws of the estimated independent variances.

Author(s)

Andrew Jackson

Description

A 5 column, 4 row matrix containing the mean and standard deviation of the concentration dependence values for each of the 2 isotopes used for each different source. Note that the standard deviation is not currently implemented and is set to 0 in this example.

Usage

data(concdepdemo)

Format

A data frame with 4 observations on the following 5 variables.

Sources The source name.
Meand15N The mean concentration dependence value for 15N
Sd15N The standard deviation concentration dependence value for 15N
Meand13C The mean concentration dependence value for 13C
Sd13C The standard deviation concentration dependence value for 13C

Examples

#see siarmenu() and option 9 for a demo using this data
convexhull

Convex Hull

Description
Calculates the area and coordinates (for plotting) of the convex hull surrounding bivariate data

Usage
convexhull(x,y)

Arguments
x, y Bivariate data given as vectors x and y

Author(s)
Andrew Jackson

correctionsdemo
Fractionation correction values for the geese data

Description
A 5 column, 4 row matrix containing the mean and standard deviation of the correction values for each of the 2 isotopes used for each different source

Usage
data(correctionsdemo)

Format
A data frame with 4 observations on the following 5 variables.
Source The source name.
Mean15N The mean correction value for 15N
Sd15N The standard deviation correction value for 15N
Mean13C The mean correction value for 13C
Sd13C The standard deviation correction value for 13C

Examples
#see siarmenu() and option 9 for a demo using this data
geese1demo
* A single group of the geese data

Description
A 2 column, 9 row matrix containing the plasma data for the first group of geese

Usage
```
data(geese1demo)
```

Format
A data frame with 9 observations on the following 2 variables.
- `d15Npl`: d15N plasma
- `d13Cpl`: d13C plasma

Examples
```
#see siarmenu() and option 9 for a demo using this data
```

geese2demo
* A multi-group version of the geese plasma data

Description
A 3 column, 251 row matrix which contains the isotopic plasma values of 251 geese over 2 isotopes

Usage
```
data(geese2demo)
```

Format
A data frame with 251 observations on the following 3 variables.
- `group`: The group number / time point
- `d15Npl`: The d15N plasma value
- `d13Cpl`: The d13C plasma value

Examples
```
#see siarmenu() and option 9 for a demo using similar data
```
hullarea

Convex Hull Area

Description
Utility function to calculate the area enclosed by the convex hull of bivariate data. Not intended for direct use by the user, and is called by **hullarea**

Usage

hullarea(x, y)

Arguments

- **x, y**
 Bivariate data given as vectors x and y

Author(s)
Andrew Jackson

laymanmetrics

Isotope-space Niche Width Metrics

Description
Calculates the 6 metrics for trophic niche width as described by Layman et al. 2007.

Usage

laymanmetrics(x, y)

Arguments

- **x, y**
 Bivariate data given as vectors x and y

Value

- **dN_range**
 Assuming y is delta Nitrogen, then dN_range is the max(delta N - min(delta N))

- **dC_range**
 Assuming x is delta Nitrogen, then dN_range is the max(delta N - min(delta N))

- **hull**
 Contains the area of the convex hull around the data points defined by x and y (hull$TA); the coordinates for plotting of the convex hull (hull$xcoords, hull$ycoords); and the index address of the points in x and y which define the convex hull (hull$chI)
Overlap

CD
Mean distance to centroid

MNND
Mean Nearest Neighbour Distance

SDNND
Standard Deviation of the Nearest Neighbour Distance

Author(s)
Andrew Jackson

References

newgraphwindow
Opens a new graphics window on a variety of platforms

Description
Opens a new graphics window on a variety of platforms

Usage
newgraphwindow()

Details
Not intended for use outside siarmenu

Author(s)
Andrew Parnell

overlap
Area of overlap between two estimated ellipses

Description
Given the coordinates of two bivariate samples, this function calculates (computationally) the area of overlap between two standard ellipses. Note, be sure to use a sufficiently low step size when creating the ellipses (i.e. to ensure that there is no excessive discretising of the elliptical shape). As a result of this process, you will inevitably underestimate the true ellipse areas and hence their overlap (although this bias is likely to be inconsequential) if a suitable fine scale is chosen for the step size. There is no single rule for making this choice as it depends on the angle and shape of the ellipse but a step-size of 1 should be more than sufficient in most cases (N.B. the default steps=5). The ellipses calculated are the small sample size corrected standard ellipses.
panelcontour

Usage

overlap(x1,y1,x2,y2,steps = 5)

Arguments

x1 A vector containing the x coordinates of the first data.
y1 A vector containing the y coordinates of the first data.
x2 A vector containing the x coordinates of the second data.
y2 A vector containing the y coordinates of the second data.
steps The number of steps in degrees to estimate points on the curve.

Value

overlap The area of overlap between the two standard ellipses.
area1 The area of the first ellipse.
area2 The area of the second ellipse.

Author(s)

Andrew Jackson

panelcontour Adds contours to a matrix plot

Description

A simple function used by pairs to produce neat looking matrix plots. Not intended for use by those using siar.

Usage

panelcontour(x, y, ...)

Arguments

x A numeric vector containing data with which to produce a contour plot
y A numeric vector containing data with which to produce a contour plot
... Other arguments

Author(s)

Andrew Parnell
panelcor

Add correlations to a matrix plot

Description
A simple function used by pairs to produce neat looking matrix plots. Not intended for use by those using siar.

Usage
panelcor(x, y, digits = 2, prefix = "", cex.cor, ...)

Arguments
- x: A numeric vector containing data with which to produce correlations
- y: A numeric vector containing data with which to produce correlations
- digits: Number of digits to display on plot
- prefix: Text to add before the correlation
- cex.cor: Multiplier for the size of the text on the plot
- ...: Other arguments

Author(s)
Unknown

panelhist

Add histograms to the diagonal of a matrix plot

Description
A simple function used by pairs to produce neat looking matrix plots. Not intended for use by those using siar.

Usage
panelhist(x, ...)

Arguments
- x: A numeric vector containing data over which to compute a histogram
- ...: Other arguments

Author(s)
Unknown
plotSigmaEllipse

Description
A utility function for quickly adding an ellipse to an existing graph based on a correlation matrix defining the ellipse’s parameters.

Usage
plotSigmaEllipse(m, sigma, steps=5, col="black", lwd=1, lty=2)

Arguments
- m: A vector of length 2 containing the centres of the ellipse (i.e. the means of the ellipse).
- sigma: A 2x2 matrix representing the correlation matrix that defines the ellipse.
- steps: A visual rendering option that sets the number of step-size and hence resolution of the points used to draw the lines defining the ellipses. The larger the value, the more angular the ellipses will appear.
- col: The colour to use in the plot see par.
- lty: The line type to use in the plot see par.
- lwd: The line width to use in the plot see par.

Author(s)
Andrew Jackson

popSEA

Description
Returns statistics on the standard ellipse based on a population (as opposed to a sample).

Usage
popSEA(sigma)

Arguments
- sigma: A 2x2 matrix defining the correlation structure of bivariate data.
Value

- **SEA**: The area of the standard ellipse.
- **eccentricity**: The eccentricity of the ellipse.
- **a**: The length of the semi-major axis of the ellipse.
- **b**: The length of the semi-minor axis of the ellipse.

Author(s)

Andrew Jackson

siaraddcross

Plotting tool for adding isotope bi-plot data to a figure

Description

A sub-function for siarplotdata() and not intended for calling directly by the user.

Author(s)

Andrew Parnell and Andrew Jackson

siardemo

Runs the siar model and some nice plots for the siar package

Description

A simple function which utilises the loaded in Geese plasma data to run the MCMC on dietary proportions. Can be accessed either directly or through the menu function.

Usage

siardemo(siarversion = 0)

Arguments

- **siarversion**: Not required

Author(s)

Andrew Parnell
siardensityplot

SIAR’s Custom Density Plot

Description

generates a custom density plot of the a matrix of data, usually but not exclusively representing the posterior draws of estimated parameters. Based on `hdr.boxplot` in the `hdr` package.

Usage

```r
siardensityplot(dat, probs = c(95, 75, 50),
    xlab = "Group", ylab = "Value", xticklabels = NULL, yticklabels = NULL,
    type = "boxes", clr = gray((9:1)/10), scl = 1,
    xspc = 0.5, prn = F, leg = FALSE, ct = "mode", ylims = NULL,
    lbound = -Inf, ubound = Inf, main = "", ...) 
```

Arguments

- **dat**
 Data to be plotted as a matrix.
- **probs**
 Define the extent probability intervals for a given parameter.
- **xlab**
 Specifies the text to print on the x-axis.
- **ylab**
 Specifies the text to print on the y-axis.
- **xticklabels**
 Specifies the text to associate with each group defined as ticks on the x-axis.
- **yticklabels**
 Specifies the text to associate with each tickmark on the y-axis.
- **type**
 Determines the style of graph. `type="boxes"` draws boxplot style (default), `type="lines"` draws overlain lines increasing in thickness
- **clr**
 Determines the set of colours to use for the boxes. Default is greyscale.
- **scl**
 Specifies a proportional scaling factor to increase (`scl > 1`) or decrease (`scl < 1`) the default width of lines or boxes. Default = 1.
- **xspc**
 Sets the amount of blank space either side of the first and last (on the x-axis) graphic object.
- **prn**
 If `prn=TRUE` the values for the defined probability densities (`probs`) are returned to the command window. Default is `prn=FALSE` with no such output.
- **leg**
 Determines whether a legend is to be drawn (`leg=TRUE`) or not (default `leg=FALSE`). Note, currently only supported for `type="lines"`.
- **ct**
 Plots the specified measure of central tendency, taking one of: 'mode', 'mean', 'median'
- **ylims**
 Sets the y axis limits. By default this is inferred from the data
- **lbound**
 Sets a strict limit on the lower extent of the posterior distribution. E.g. useful for values that must be strictly positive.
- **ubound**
 Sets a strict limit on the upper extent of the posterior distribution. E.g. useful for proportions that must be strictly less than one.
- **main**
 A title for the figure.
- **...**
 Additional parameters to be passed to `plot`.
siarelicit

Elicit prior parameters for the Dirichlet distribution.

Description

Allows users to enter mean estimated proportions and a standard deviation term so that useful prior distributions can be entered into the `siarmcmcdirichletv4` function.

Usage

\[
\text{siarelicit}(\text{siardata})
\]

Arguments

- **siardata**
 A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. For more details of these inputs see the `siarmenu` function.

Details

Uses standard results from the Dirichlet distribution to turn the estimated mean proportions \(M_i \) and a variance term \(V_1 \) to give the estimated parameters \(a_i \) via:

\[
a_i = M_i \left(\frac{M_i(1 - M_i)}{V_1} - 1 \right)
\]

Note that \(V \) can be given for any of the \(k \) sources.

Author(s)

Andrew Parnell
siarhdrs

Description

Creates highest density regions and convergence diagnostics from siar output. Accessed by the siar menu function and not really intended for use outside that environment.

Usage

siarhdrs(siardata)

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

Details

Not intended for use outside siarmenu

Author(s)

Andrew Parnell

siarhistograms

Description

Produces neat and colourful histograms for siar output.

Usage

siarhistograms(siardata, siarversion=0, legloc='topright')

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

siarversion The siar version number as a string.

legloc The location of the legend - see legend for plotting choices.
siarmatrixplot

Details

Not intended for use outside siarmenu

Author(s)

Andrew Parnell

siarloaddata

Loads in siar data

Description

Loads in siar data via a neat menu-driven interface.

Usage

siarloaddata(siarversion)

Arguments

siarversion The siar version number as a string.

Details

Not intended for use outside siarmenu

Author(s)

Andrew Parnell

siarmatrixplot

Matrix plots of siar output

Description

Produces matrix plots of siar output

Usage

siarmatrixplot(siardata, siarversion=0)

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

siarversion The siar version number.
siarmcmcdirichletv4

Details
Not intended for use outside siarmenu

Author(s)
Andrew Parnell

siarmcmcdirichletv4 MCMC for stable isotope data

Description
Runs an MCMC on stable isotope data from certain organisms to determine their dietary habits.

Usage
siarmcmcdirichletv4(data, sources, corrections = 0, concdep = 0, iterations=200000, burnin=50000, howmany=10000, thinby=1, prior = rep(1, numsources))

Arguments
- **data**: A matrix with each food source as a separate row and each isotope as a separate column.
- **sources**: A matrix containing the mean and standard deviations of the fractionated correction values for each of the isotopes. Also allows corrections = 0 for pre-corrected data.
- **corrections**: A matrix containing the mean and standard deviations of the fractional correction values for each of the isotopes. Also allows corrections = 0 for pre-corrected data.
- **concdep**: A matrix containing the mean and standard deviations of the concentration dependence values for each of the isotopes. Also allows concdep = 0 for data with no required concentration dependence. Note that version 4.0 does not use the standard deviations.
- **iterations**: The number of iterations to run.
- **burnin**: The size of the burnin
- **howmany**: How often to report the number of iterations.
- **thinby**: The amount of thinning of the iterations.
- **prior**: The dirichlet distribution prior parameters, the default is rep(1, numsources). New parameters can be estimated via the function siarelicit.
- **siardata**: A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHONLY, EXIT, and output. For more details of these inputs see the siarmenu function.
Details

The model assumes that each target value comes from a Gaussian distribution with an unknown mean and standard deviation. The structure of the mean is a weighted combination of the food sources' isotopic values. The weights are made up dietary proportions (which are given a Dirichlet prior distribution) and the concentration dependencies given for the different food sources. The standard deviation is divided up between the uncertainty around the fractionation corrections (if corrections are given) and the natural variability between target individuals within a defined group (or between all individuals if no grouping structure is specified). The default iterations numbers work well for the demo data sets, but advanced users will want to adjust them to suit their analysis.

Value

A parameter matrix consisting of (iterations-burnin)/thinby rows with numgroups*(numsources+numiso) columns, where numsources is the number of food sources, numiso is the number of isotopes, and numgroups is the number of groups. The parameter matrix is structured so that, for each group, the first columns are those of the proportions of each food source eaten, the next columns are the standard deviations for each isotope. This format repeats across rows to each group. The parameters may then subsequently be used for plotting, convergence checks, summaries, etc, etc.

Author(s)

Andrew Parnell

See Also

siarmenu, siarelicit

Examples

Should take around 10 seconds to run
#out <- siarmcmcdirichletv4(geesedemo, sourcesdemo, correctionsdemo, concdepdemo)

siarmenu

A list of menu options for running the siar package

Description

Brings up a list of menu options which allow the user to run MCMC and produce some plots

Usage

siarmenu()
Details

The internal workings of this function uses a list called siardata containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. Targets, sources and corrections are the isotopic values, source values and fractionation correction values respectively. PATH is the path used to get to the files. TITLE is the title to be used on most of the graphs. Numgroups, numdata, numsources and numiso are the number of groups, number of data points, number of sources and number of isotopes respectively. SHOULDRUN, GRAPHSONLY and EXIT are used to determine which parts of the menu system can be accessed.

Author(s)

Andrew Parnell

See Also

siarmcmdirichletv4

Examples

#siarmenu()

siarmultigrouprun siar MCMC for multi-group data

Description

Runs the siar MCMC with Dirichlet mixture mean for isotopic data

Usage

siarmultigrouprun(siardata)

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

Details

Not intended for use outside siarmenu

Author(s)

Andrew Parnell
siarplotdata Produces plots of target data and sources

Description

Produces colourful scatter plots of siar target data and sources.

Usage

siarplotdata(siardata, siarversion = 0, grp=1:siardata$numgroups,panel=NULL,isos=c(0,0),leg=1)

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

siarversion The siar version number as a string.

group A vector containing the groups of target consumer data to be rendered on the graph. Default value NULL draws all groups. Groups are identified by their own data marker.

panel A scalar value that determines if the groups of consumer data are to be drawn on the same graph (default=NULL) or on separate panels within a single figure. Number of rows and columns of panels can be specified by a 2 element vector. Alternatively, giving a single value e.g. panel=1 will cause the program to attempt to fit a "reasonable" number of panels to each row and column.

isos A two element vector containing the reference to each isotope combination for the x and y axis to be rendered in the figure. Note, only relevant for datasets containing >2 isotopes. By default, if there are more than two isotopes, separate figures will be created for all possible combinations of isotopes.

leg A scalar determining how the legend is to be created. Default leg=1 prompts the user to locate the legend on each figure. leg = 2, puts the legend in a new figure automatically (useful if you want to omit the legend but still want to retain access to the information). leg = 0 omits the legend entirely.

Details

Can be called at any time after running siarloaddata or when running siarmenu

Author(s)

Andrew Parnell and Andrew Jackson
siarplotdatawrapper

Handles repeated plotting instructions for siarplotdata()

Description

A sub-function for siarplotdata() and not intended for calling directly by the user.

Author(s)

Andrew Parnell and Andrew Jackson

siarplottarget

Plots the consumers’ data in isotope space

Description

A sub-function for siarplotdata() and not intended for calling directly by the user.

Author(s)

Andrew Parnell and Andrew Jackson

siarproportionbygroupplot

siar proportion plots by group

Description

Plots boxplots or line plots representing defined credible intervals for each source (x-axis) for a given group. The representation is basically the same as siarhistograms but allows easier comparison of source contribution within a group. Similar in style to siarproportionbysourceplot().

Usage

siarproportionbygroupplot(siardata, siarversion=0, probs=c(95, 75, 50), xlabels=NULL, grp=NULL, type="box"
Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

siarversion The siar version number.

probs Define the extent probability intervals for a given parameter.

xlabels Specifies the text to associate with each group defined as ticks on the x-axis.

grp Specifies which group the graph is drawn for. Default prompts the user for input from the command line.

type Determines the style of graph. type="boxes" draws boxplot style (default), type="lines" draws overlain lines increasing in thickness

clr Determines the set of colours to use for the boxes. Default is greyscale.

scl Specifies a proportional scaling factor to increase (scl > 1) or decrease (scl < 1) the default width of lines or boxes. Default = 1.

xspc Sets the amount of blank space either side of the first and last (on the x-axis) graphic object.

prn If prn=TRUE the values for the defined probability densities (probs) are returned to the command window. Default is prn=FALSE with no such output.

leg Determines whether a legend is to be drawn (leg=TRUE) or not (default leg=FALSE). Note, currently only supported for type="lines".

Author(s)

Andrew Jackson & Andrew Parnell

Description

Useful for siar data with multiple groups where the variability of each source over time is of interest.

Usage

siarproportionbysourceplot(siardata, siarversion=0,_probs=c(95,75,50), xlabels=NULL, grp=NULL, type="boxes", clr=gray, scl=1, xspc=1, prn=FALSE, leg=FALSE)
siarsaveoutput

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

siarversion The siar version number.

probs Define the extent probability intervals for a given parameter.

xlabels Specifies the text to associate with each group defined as ticks on the x-axis.

grp Specifies which source group the graph is drawn for. Default prompts the user for input from the command line.

type Determines the style of graph. type="boxes" draws boxplot style (default), type="lines" draws overlain lines increasing in thickness

clr Determines the set of colours to use for the boxes. Default is greyscale.

scl Specifies a proportional scaling factor to increase (scl > 1) or decrease (scl < 1) the default width of lines or boxes. Default = 1.

xspc Sets the amount of blank space either side of the first and last (on the x-axis) graphic object.

prn If prn=TRUE the values for the defined probability densities (probs) are returned to the command window. Default is prn=FALSE with no such output.

leg Determines whether a legend is to be drawn (leg=TRUE) or not (default leg=FALSE). Note, currently only supported for type="lines".

Author(s)

Andrew Parnell

siarsaveoutput Saves siar output to a file

Description

Saves created siar output to a file

Usage

siarsaveoutput(siardata)

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHONLY, EXIT, and output. For more details of these inputs see the siarmenu function.
siarsinglegrouprun

Description

Runs the siar MCMC with Dirichlet mixture mean for isotopic data.

Usage

siarsinglegrouprun(siardata)

Arguments

- **siardata**: A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

Details

Not intended for use outside siarmenu

Author(s)

Andrew Parnell

siarsolomcvcv4

Description

MCMC for stable isotope data with only single target organisms.

Usage

siarsolomcvcv4(data, sources, corrections = 0, concdep = 0, iterations=200000, burnin=50000, howmany=1)
Arguments

- **data**: A matrix with each food source as a separate row and each isotope as a separate column.
- **sources**: A matrix containing the mean and standard deviations of the fractionated correction values for each of the isotopes. Also allows corrections = 0 for pre-corrected data.
- **corrections**: A matrix containing the mean and standard deviations of the fractional correction values for each of the isotopes. Also allows corrections = 0 for pre-corrected data.
- **concdep**: A matrix containing the mean and standard deviations of the concentration dependence values for each of the isotopes. Also allows concdep = 0 for data with no required concentration dependence. Note that version 4.0 does not use the standard deviations.
- **iterations**: The number of iterations to run.
- **burnin**: The size of the burnin.
- **howmany**: How often to report the number of iterations.
- **thinby**: The amount of thinning of the iterations.
- **prior**: The dirichlet distribution prior parameters, the default is rep(1,numsources). New parameters can be estimated via the function `siarelicit`.
- **siardata**: A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHSONLY, EXIT, and output. For more details of these inputs see the `siarmenu` function.

Details

The model assumes that each target value comes from a Gaussian distribution with an unknown mean and standard deviation. The structure of the mean is a weighted combination of the food sources' isotopic values. The weights are made up dietary proportions (which are given a Dirichlet prior distribution) and the concentration dependencies given for the different food sources. The standard deviation is divided up between the uncertainty around the fractionation corrections (if corrections are given) and the natural variability between target individuals within a defined group (or between all individuals if no grouping structure is specified). The default iterations numbers work well for the demo data sets, but advanced users will want to adjust them to suit their analysis.

Note that this version is analogous to the Moore and Semmens (2008) MixSIR model except with a Dirichlet prior distribution.

Value

A parameter matrix consisting of (iterations-burnin)/thinby rows with numgroups*(numsources+numiso) columns, where numsources is the number of food sources, numiso is the number of isotopes, and numgroups is the number of groups. The parameter matrix is structured so that, for each group, the first columns are those of the proportions of each food source eaten, the next columns are the standard deviations for each isotope. This format repeats across rows to each group. The parameters may then subsequently be used for plotting, convergence checks, summaries, etc, etc.
Author(s)

Andrew Parnell

References

See Also

siarmenu, siarelicit

siarsolomultigrouprun
siar MCMC for multi-group data with only one target organism per group

Description

Runs the siar MCMC with Dirichlet mixture mean for isotopic data with only one target organism per group.

Usage

siarsolomultigrouprun(siardata)

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPH-ONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

Author(s)

Andrew Parnell
siarsolosinglegrouprun

siar MCMC for single group data with only one organism

Description

Runs the siar MCMC with Dirichlet mixture mean for isotopic data when there is only one target organism.

Usage

siarsolosinglegrouprun(siardata)

Arguments

siardata A list containing some or all of the following parts: targets, sources, corrections, PATH, TITLE, numgroups, numdata, numsources, numiso, SHOULDRUN, GRAPHONLY, EXIT, and output. For more details of these inputs see the siarmenu function.

Details

Not intended for use outside siarmenu

Author(s)

Andrew Parnell

siber.ellipses

The SIBER method for calculating ellipse based metrics of niche width

Description

Takes bivariate isotope data in x and y with a grouping variable and returns the posterior draws for the metric SEA.B for each group.

Usage

siber.ellipses(x,y,group,R=10^4)

Arguments

x Data for the x-axis.
y Data for the y-axis.
group A grouping variable
R The number of posterior draws to make
The SIBER method for calculating Convex Hull based metrics of niche width

Description

Usage

siber.hull.metrics(X,Y,G,R=10^4)

Arguments

X Data for the x-axis.
Y Data for the y-axis.
G A grouping variable
R The number of posterior draws to make

Value

metrics A Rx6 matrix containing the R posterior draws in rows, and the metrics in columns in the order: dNr, dCr, TA, CD, MNND, SDNND.

Author(s)

Andrew Jackson
sourcesdemo

Source (in this case plant) isotope values

Description

A 3 column, 4 row matrix containing 4 different plants and their measurements on 2 different isotopes

Usage

data(sourcesdemo)

Format

A data frame with 5 observations on the following 3 variables.

- **Sources** The plants name
- **Meand15N** d15N mean
- **Sd15N** d15N standard deviation
- **Meand13C** d13C mean
- **Sd13C** d13C standard deviation

Examples

#see siarmenu() and option 9 for a demo using this data

standard.ellipse

Standard Ellipse

Description

Fits a standard ellipse to bivariate data analytically using maximum likelihood estimators.

Usage

standard.ellipse(x,y,confs=NULL,steps=5)

Arguments

- **x** Vector of x data.
- **y** Vector of y data.
- **confs** Optional list of confidence intervals as a vector. If specified will calculate the confidence intervals of the means and store their coordinates in a list (useful for plotting). Defaults to NULL.
- **steps** A visual rendering option that sets the number of step-size and hence resolution of the points used to draw the lines defining the ellipses. The larger the value, the more angular the ellipses will appear.
Value

- **CEA**: The area of the 95 percent confidence ellipse.
- **SEA**: The area of the standard ellipse.
- **SEAc**: The area of the small sample size corrected standard ellipse.
- **theta**: The angle of the semi-major axis of the ellipse with the x-axis.
- **confs**: List of the confidence intervals of the mean, if specified.
- **xCEA**: X coordinates of the confidence ellipses.
- **yCEA**: Y coordinates of the confidence ellipses.
- **xSEA**: X coordinates of the standard ellipse.
- **ySEA**: Y coordinates of the standard ellipse.
- **xSEAc**: X coordinates of the small sample size corrected standard ellipse.
- **ySEAc**: Y coordinates of the small sample size corrected standard ellipse.
- **eccentricity**: Eccentricity of the ellipse.
- **a**: The length of the semi-major axis a.
- **b**: The length of the semi-minor axis a.
- **r**: The correlation coefficient of the data.
- **ac**: The length of the semi-major axis a based on the small sample size correction.
- **bc**: The length of the semi-minor axis b based on the small sample size correction.

Author(s)

Andrew Jackson
Index

*Topic **datasets**
 allgroups, 4
 concdepdemo, 6
 correctionsdemo, 7
 geese1demo, 8
 geese2demo, 8
 sourcesdemo, 31

*Topic **models**
 panelcontour, 11
 panelcor, 12
 panelhist, 12
 plotSigmaEllipse, 13
 popSEA, 13
 siaraddcross, 14
 siardemo, 14
 siardensityplot, 15
 siarelicit, 16
 siarhdrs, 17
 siarhistograms, 17
 siarmatrixplot, 18
 siarmcmcdichletv4, 19
 siarmenu, 20
 siarmultigrouprun, 21
 siarplotdata, 22
 siarplotdatawrapper, 23
 siarplottarget, 23
 siarsinglegrouprun, 26
 siarsolomcmcv4, 26
 siarsolomultigrouprun, 28
 siarsolosinglegrouprun, 29

*Topic **multivariate**
 siar-package, 2
 siarmcmcdichletv4, 19
 siarmenu, 20
 siarsolomcmcv4, 26

*Topic **programming**
 bayesMVN, 5
 bayestwoNorm, 5
 convexhull, 7
 hullarea, 9
 laymanmetrics, 9
 newgraphwindow, 10
 overlap, 10
 panelcontour, 11
 panelcor, 12
 panelhist, 12
 plotSigmaEllipse, 13
 popSEA, 13
 siaraddcross, 14
 siardemo, 14
 siardensityplot, 15
 siarelicit, 16
 siarhdrs, 17
 siarhistograms, 17
 siarloaddata, 18
 siarmatrixplot, 18
 siarmcmcdichletv4, 19
 siarmenu, 20
 siarmultigrouprun, 21
 siarplotdata, 22
 siarplotdatawrapper, 23
 siarplottarget, 23
 siarproportionbygroupplot, 23
 siarproportionbysourceplot, 24
 siarsaveoutput, 25
 siarsinglegrouprun, 26
 siarsolomcmcv4, 26
 siarsolomultigrouprun, 28
 siarsolosinglegrouprun, 29
 siber.ellipses, 29
 siber.hull.metrics, 30
 standard.ellipse, 31

 allgroups, 4
 bayesMVN, 5
 bayestwoNorm, 5
 concdepdemo, 6
 convexhull, 7
 correctionsdemo, 7
INDEX

geese2demo, 8
hdr, 15
dhdr.boxplot, 15
hullarea, 9, 9
laymanmetrics, 9
legend, 17
newgraphwindow, 10
overlap, 10
panelcontour, 11
panelcor, 12
panelhist, 12
par, 13
plot, 15
plotSigmaEllipse, 13
popSEA, 13

rmultireg, 5
runireg, 5

siar (siar-package), 2
siar-package, 2
siaraddcross, 14
siardemo, 14
siardensityplot, 15
siarelicit, 16, 19, 20, 27, 28
siarhdrs, 17
siarhistograms, 17
siarloaddata, 18, 22
siarmatrixplot, 18
siarmcmcdirichletv4, 4, 16, 19, 21
siarmenu, 4, 10, 16–20, 20, 21, 22, 24–29
siarmultigrouprun, 21
siarplotdata, 22
siarplotdatawrapper, 23
siarplottarget, 23
siarproportionbygroupplot, 23
siarproportionbysourceplot, 24
siarsaveoutput, 25
siarsinglegrouprun, 26
siarsolomcmcv4, 26
siarsolomultigrouprun, 28
siarsolosinglegrouprun, 29
siber.ellipses, 29
siber.hull.metrics, 30
sourcesdemo, 31
standard.ellipse, 31