Package ‘sme’

February 9, 2018

Version 1.0.2
Date 2018-02-09
Title Smoothing-Splines Mixed-Effects Models
Depends R (>= 2.15.2), splines, lattice, stats
Description Fit smoothing-splines mixed-effects models to replicated functional data sets and visualise the results.
License GPL (>= 3)
URL https://github.com/mberk/sme
BugReports https://github.com/mberk/sme/issues
NeedsCompilation yes
Author Maurice Berk [aut, cre]
Maintainer Maurice Berk <maurice@mauriceberk.com>
Repository CRAN
Date/Publication 2018-02-09 16:43:56 UTC

R topics documented:

AICc .. 2
BICn .. 3
getRoughnessMatrix 4
inflammatory 5
MTB .. 5
plot.sme .. 6
plotSmeDiagnostic 7
plotSmeModel 8
plotSmeRaw 9
sme .. 10
sme.data.frame 12
sme.list .. 14
smeObject .. 16

Index 18
AICc

The corrected AIC

Description
Calculates the corrected AIC (AICc) of Hurvich and Tsai (1989). The AICc modifies the standard AIC with a correction for small sample sizes.

Usage
AICc(object)

Arguments
object a fitted model object for which there exists a logLik method to extract the corresponding log-likelihood or an object inheriting from class logLik

Details
AIC is an asymptotic result and may be inappropriate when the sample size is small, the number of estimated model parameters is large, or both. For the specific case of a linear model with homogeneous errors then Hurvich and Tsai (1989) derived a corrected AIC (AICc) which includes a correction for small sample sizes as $AICc = AIC + (2k(k+1))/(n-k-1)$ where AIC is the standard AIC, k is the number of parameters in the model and n is the number of observations.

While this is an exact result, it only applies in the very specific circumstances in which it was derived. However, as Burnham and Anderson (2002) point out, whenever the sample size is small some form of correction to the standard AIC is necessary, to the extent that they argue the AICc of Hurvich and Tsai (1989) should be used regardless of context unless a specific correction can be derived. In fact Burnham and Anderson (2004) go so far as to argue that it should be used irrespective of sample size as it tends to the standard AIC when n is large.

Value
A numeric value with the AICc of the model

Author(s)
Maurice Berk <maurice.berk01@imperial.ac.uk>

References
BICn

Examples

```r
data(MTB)
fit <- sme(MTB$variable==6031,c("y","tme","ind"))
AICc(fit)
```

BICn
An alternative BIC for longitudinal models

Description

Calculates the BIC as $-2 \times \log\text{-likelihood} + \log(n) \times npar$ for a longitudinal model where $npar$ is the number of parameters in the fitted-model and n is the number of subjects.

Usage

`BICn(object,...)`

Arguments

- `object`
a fitted longitudinal model object
- `...`
some methods for this generic function may require additional arguments

Details

When applying the BIC in a longitudinal context, there is some debate as to whether the sample size should be taken to mean the number of subjects or the total number of observations across all subjects (see Section 7.3 of Hedeker and Gibbons, 2006).

Assuming the default BIC function accounts for the latter case, this generic function can be implemented for longitudinal models where the number of subjects can be extracted in order to calculate the BIC under the alternative definition.

Value

A numeric value with the BIC of the longitudinal model, with the penalty taken as a function of the number of subjects as described.

Author(s)

Maurice Berk <maurice.berk01@imperial.ac.uk>

References

getRoughnessMatrix

Examples

```r
data(MTB)
fit <- sme(MTB$variable==6031,c("y","tme","ind"))
BICn(fit)
```

getRoughnessMatrix Extract the roughness matrix used in an SME model fit

Description

Given an `sme` object, returns the roughness matrix which can be used to quickly calculate the integrated squared second derivative of the mean and individual level curves.

Arguments

- `object` a fitted SME model object returned from the `sme` function

Details

The parameters of the SME model are estimated using maximum penalized likelihood, where the penalized likelihood is the standard likelihood with the addition of penalty terms corresponding to the roughness of the mean and individual level curves. Typically the roughness of a curve is quantified as its integrated squared second derivative. Green and Silverman (1994) show that, for a natural cubic spline interpolating the vector of points f, there exists a roughness matrix G such that the integrated squared second derivative is $f'Gf$ where f' denotes f transposed. For details on constructing the matrix G, either refer to the original source of Green and Silverman (1994) or it may prove easier to access Berk and Montana (2009) where they can be found in the appendix.

Value

The roughness matrix corresponding to the SME model fit

Author(s)

Maurice Berk <maurice.berk01@imperial.ac.uk>

References

Examples

```r
data(MTB)
fit <- sme(MTB$variable==6031,c("y","tme","ind"))
getRoughnessMatrix(fit)
```
Inflammatory

Example gene transcript from an experiment on children suffering from an inflammatory condition

Description

The **inflammatory** data frame has 318 rows and 3 columns.

Format

This data frame contains the following columns:

- **y**: a numeric vector of observed gene expression levels
- **tme**: a numeric vector of time points corresponding to the observations in `y`
- **ind**: a factor indicating which subject the observations in `y` belong to

Source

MTB

Ten example gene transcripts from an experiment investigating the in vitro transcriptional response to M.Tuberculosis

Description

The **MTB** data frame has 290 rows and 4 columns.

Format

This data frame contains the following columns:

- **y**: a numeric vector of observed gene expression levels
- **tme**: a numeric vector of time points corresponding to the observations in `y`
- **ind**: a factor indicating which subject the observations in `y` belong to
- **variable**: a factor indicating which gene transcript the observations in `y` belong to

Source

plot.sme

Visualisation of smoothing-splines mixed-effects models

Description

A visualisation of the smoothing-splines mixed-effects model fit is obtained. For type="model", a scatter plot of the observations overlaid with the fitted mean and (optionally) individual curves. Confidence limits for the mean curve can optionally also be shown. See plot.sme.model for further details. For type="raw", a trellis plot of the raw data for each subject, with the fitted individual curves optionally overlaid. See plot.sme.raw for further details. For type="diagnostic", a diagnostic plot of the model residuals. See plot.sme.diagnostic for further details.

Usage

```r
## S3 method for class 'sme'
plot(x, type="model", ...)
```

Arguments

- `x`: an object inheriting from class sme, representing a fitted smoothing-splines mixed-effects model
- `type`: the type of plot desired, currently either "model" for visualising the model fit, "raw" for visualising the raw data or "diagnostic" for visualising the model residuals
- `...`: further arguments to plotSmeModel, plotSmeRaw or plotSmeDiagnostic

Value

Depending on type, either a plot of the fitted model, a plot of the raw data or a diagnostic plot of the model residuals

Author(s)

Maurice Berk <maurice@mauriceberk.com>

References

See Also

plotSmeModel, plotSmeRaw, plotSmeDiagnostic
plotSmeDiagnostic

Examples

data(MTB)
fit <- sme(MTB$variable==6031,c("y","tme","ind"))
plot(fit,type="model")
plot(fit,type="raw")
plot(fit,type="diagnostic")

plotSmeDiagnostic Diagnostic plot of the residuals for a fitted smoothing-splines mixed-effects model

Description

This type of plot is heavily inspired by Wu and Zhang (2006). A plot containing four panels is produced: (1) standardised residuals against fitted values, (2) standardised residuals against time, (3) standardised residuals against response and (4) a normal Q-Q plot of the standardised residuals. These plots can be used to assess how well the fitted model has accounted for the temporal correlation and between-subject variance in the data.

Usage

plotSmeDiagnostic(x)

Arguments

x an object inheriting from class sme, representing a fitted smoothing-splines mixed-effects model

Value

A four panel plot as described above.

Author(s)

Maurice Berk <maurice@mauriceberk.com>

References

See Also

plot.sme, plotSmeRaw, plotSmeModel
Examples

```r
data(MTB)
fit <- sme(MTB$variable<=6031,c("y","tme","ind"))
plotSmeDiagnostic(fit)
```

plotSmeModel

Visualisation of a fitted smoothing-splines mixed-effects model

Description

The observations used to fit the given smoothing-splines mixed-effects model are shown as a scatter plot and the fitted mean curve is overlaid. Optionally, the fitted individual curves are also shown. Also, the 95% confidence band for the fitted mean curve can optionally be displayed.

Usage

```r
plotSmeModel(x,xlab="Time",ylab="Y",showIndividuals=T,showConfidenceBands=F,
col.meanCurve="red",...)
```

Arguments

- `x` an object inheriting from class `sme`, representing a fitted smoothing-splines mixed-effects model
- `xlab` the label for the x-axis, defaulting to "Time"
- `ylab` the label for the y-axis, defaulting to "Y"
- `showIndividuals` if TRUE then each of the fitted subject specific curves will be displayed in the plot as dashed lines, otherwise only the mean curve will be shown
- `showConfidenceBands` if TRUE, then the 95% confidence band for the fitted mean curve will be shown
- `col.meanCurve` the color to be used for the fitted mean curve and, if `showConfidenceBands` is TRUE, the confidence band as well
- `...` additional arguments passed through to `plot` when producing the scatter plot of observations

Value

A plot visualising the fitted smoothing-splines mixed-effects model as described above.

Author(s)

Maurice Berk <maurice@mauriceberk.com>

References

plotSmeRaw

See Also

plot.sme, plotSmeRaw, plotSmeDiagnostic

Examples

data(MTB)
fit <- sme(MTB$variable==6031,c("y","tme","ind"))
plotSmeModel(fit,showIndividuals=FALSE)
plotSmeModel(fit,showConfidenceBands=TRUE)

plotSmeRaw

Visualisation of raw data for a smoothing-splines mixed-effects model

Description

A visualisation of the raw data used to fit the smoothing-splines mixed-effects model is obtained. This is presented as a trellis plot where each panel shows the observations for one of the subjects as a scatter plot (with optional lines connecting the observations if showRawLines is TRUE). If showModelFits is TRUE, then these observations are overlaid with the fitted individual curve for that subject.

Usage

plotSmeRaw(x,xlab="Time",ylab="Y",mainTitle="",showModelFits=TRUE,showRawLines=FALSE,...)

Arguments

x an object inheriting from class sme, representing a fitted smoothing-splines mixed-effects model
xlab the label for the x-axis, defaulting to "Time"
ylab the label for the y-axis, defaulting to "Y"
mainTitle the main title for the plot, defaulting to none
showModelFits if TRUE, the fitted individual curve for each subject will be overlaid on their observations in their panel
showRawLines if TRUE, the raw observations will be connected by lines
... additional arguments passed through to xyplot

Value

A trellis plot as described above.

Author(s)

Maurice Berk <maurice@mauriceberk.com>
References

See Also

`plot.sme, plotSmeModel, plotSmeDiagnostic`

Examples

```r
data(MTB)
fit <- sme(MTB$variable==6031, c("y", "tme", "ind"))
plotSmeRaw(fit, showModelFits=FALSE)
plotSmeRaw(fit, showModelFits=FALSE, showRawLines=TRUE)
plotSmeRaw(fit)
```

`sme`
Smoothing-splines mixed-effects models

Description

This generic function fits a smoothing-splines mixed-effects model

Usage

```r
sme(object, tme, ind, verbose=F, lambda.mu=NULL, lambda.v=NULL, maxIter=500,
knots=NULL, zeroIntercept=F, deltaEM=1e-3, deltaNM=1e-3, criteria="AICc",
initial.lambda.mu=10000, initial.lambda.v=10000, normalizeTime=FALSE,...)
```

Arguments

- `object`
either a vector of observations, a `data.frame` object or a list of vectors of observations. The method functions `sme.data.frame` and `sme.list` are documented separately.

- `tme`
either a vector of time points corresponding to the observations given in `object` or a list of vectors of time points in the case of `sme.list`. Ignored in the case of `sme.data.frame`.

- `ind`
a factor (or a vector that can be coerced to a factor) of subject identifiers corresponding to the observations given in `object` or a list of factors of subject identifiers in the case of `sme.list`. Ignored in the case of `sme.data.frame`.

- `verbose`
if `TRUE`, debug information will be output while fitting the model.

- `lambda.mu`
smoothing parameter used for the fixed-effect function. If `NULL`, the optimal values for this and `lambda.v` will be found according to `criteria` using Nelder-Mead search.

- `lambda.v`
smoothing parameter used for the random-effects functions. If `NULL`, the optimal values for this and `lambda.mu` will be found according to `criteria` using Nelder-Mead search.
maxIter maximum number of iterations to be performed for the EM algorithm
knots location of spline knots. If NULL, an incidence matrix representation will be used. See ‘Details’
zeroIntercept experimental feature. If TRUE, the fitted values of the fixed- and random-effects functions at the intercept will be zero
deltaEM convergence tolerance for the EM algorithm
deltaNM (relative) convergence tolerance for the Nelder-Mead optimisation
criteria one of "AICc", "AIC", "BICn" or "BICn" indicating which criteria to use to score a particular combination of lambda.mu and lambda.v in the Nelder-Mead search
initial.lambda.mu value to initialise the smoothing parameter for the fixed-effects to in the Nelder-Mead search. See details below
initial.lambda.v value to initialise the smoothing parameter for the random-effects to in the Nelder-Mead search. See details below
normalizeTime should time be normalized to lie in $[0,1]$? See details below
... additional arguments to sme.data.frame or sme.list

Details

Prior to package version 0.9, starting values for the smoothing parameters in the Nelder-Mead search were fixed to 10000 for both lambda.mu and lambda.v. As it turns out, the appropriate scale for the smoothing parameters depends on the scale for tme and so tme will now automatically be rescaled to lie in $[0,1]$ and much smaller initial values for the smoothing parameters will be used, although these can now optionally changed to achieve best results. To reproduce results obtained using previous versions of the package, set initial.lambda.mu=10000, initial.lambda.v=10000 and normalizeTime=FALSE.

The default behaviour is to use an incidence matrix representation for the smoothing-splines. This works well in most situations but may incur a high computational cost when the number of distinct time points is large, as may be the case for irregularly sampled data. Alternatively, a basis projection can be used by giving a vector of knots of length (much) less than the number of distinct time points.

Value

An object of class sme representing the smoothing-splines mixed-effects model fit. See smeObject for the components of the fit and plot.sme for visualisation options

Author(s)

Maurice Berk <maurice.berk01@imperial.ac.uk>

References

sme.data.frame

See Also

smeObject, sme.data.frame, sme.list.plot.sme

Examples

data(MTB)
fit.AIC <- sme(MTB$variable==6031,c("y","tme","ind"),criteria="AIC")
fit.BICN <- sme(MTB$variable==6031,c("y","tme","ind"),criteria="BICN")
fit.BICn <- sme(MTB$variable==6031,c("y","tme","ind"),criteria="BICn")
fit.AICc <- sme(MTB$variable==6031,c("y","tme","ind"),criteria="AICc")

fit <- sme(MTB$variable==6031,c("y","tme","ind"),lambda.mu=1e5,lambda.v=1e5)
data(inflammatory)
system.time(fit <- sme(inflammatory,knots=c(29.5,57.84.5),deltaEM=0.1,deltaNM=0.1))

sme.data.frame

Smoothing-splines mixed-effects model fit(s) from a data.frame object

Description

Carry out one or more independent smoothing-splines mixed-effects model fits simultaneously

Usage

```r
## S3 method for class 'data.frame'
sme(object,tme,ind,verbose=F,lambda.mu=NULL,lambda.v=NULL,maxIter=500,
knots=NULL,zeroIntercept=F,deltaEM=1e-3,deltaNM=1e-3,criteria="AICc",
initial.lambda.mu=10000,initial.lambda.v=10000,normalizeTime=FALSE,...)
```

Arguments

- `object` a data.frame with named variables `y`, `tme`, `ind` and, optionally, `variable`. The first three represent observations, corresponding time points and corresponding subjects respectively. If `variable` is missing then these are used to carry out a single model fit. If `variable` is present then it denotes variable membership, and a separate smoothing-splines mixed-effects model is fit to each unique variable
- `tme` for consistency with the generic function. Ignored in this case
- `ind` for consistency with the generic function. Ignored in this case
- `verbose` if TRUE, debug information will be output while fitting the model(s)
- `lambda.mu` in the case of carrying out a single model fit, either a smoothing parameter to be used for the fixed-effect function or NULL if the optimal values for this and `lambda.v` should be found according to `criteria` using Nelder-Mead search. For the case of multiple model fits, either a single smoothing parameter to be used for all fits, or a vector of smoothing parameters, one for each fit, or NULL if Nelder-Mead search should be used to find the optimal values for this and `lambda.v` for all variables
In the case of carrying out a single model fit, either a smoothing parameter to be used for the random-effects functions or NULL if the optimal values for this and lambda.mu should be found according to criteria using Nelder-Mead search. For the case of multiple model fits, either a single smoothing parameter to be used for all fits, or a vector of smoothing parameters, one for each fit, or NULL if Nelder-Mead search should be used to find the optimal values for this and lambda.mu for all variables.

maxIter maximum number of iterations to be performed for the EM algorithm
knots location of spline knots. If NULL, an incidence matrix representation will be used. See ‘Details’
zeroIntercept experimental feature. If TRUE, the fitted values of the fixed- and random-effects functions at the intercept will be zero
deltaEM convergence tolerance for the EM algorithm
deltaNM (relative) convergence tolerance for the Nelder-Mead optimisation
criteria one of "AICc", "AIC", "BICN" or "BICn" indicating which criteria to use to score a particular combination of lambda.mu and lambda.v in the Nelder-Mead search
initial.lambda.mu value to initialise the smoothing parameter for the fixed-effects to in the Nelder-Mead search. See details below
initial.lambda.v value to initialise the smoothing parameter for the random-effects to in the Nelder-Mead search. See details below
normalizeTime should time be normalized to lie in $[0,1]$? See details below
...
additional arguments used when carrying out multiple fits, specifically numberOfThreads indicating the number of threads used to carry out the multiple fits in parallel. See sme.list for details

Details

Prior to package version 0.9, starting values for the smoothing parameters in the Nelder-Mead search were fixed to 10000 for both lambda.mu and lambda.v. As it turns out, the appropriate scale for the smoothing parameters depends on the scale for tme and so tme will now automatically be rescaled to lie in $[0,1]$ and much smaller initial values for the smoothing parameters will be used, although these can now optionally changed to achieve best results. To reproduce results obtained using previous versions of the package, set initial.lambda.mu=10000, initial.lambda.v=10000 and normalizeTime=FALSE.

The default behaviour is to use an incidence matrix representation for the smoothing-splines. This works well in most situations but may incur a high computational cost when the number of distinct time points is large, as may be the case for irregularly sampled data. Alternatively, a basis projection can be used by giving a vector of knots of length (much) less than the number of distinct time points.

Value

In the case of a single model fit, an object of class sme. For multiple model fits, a list of such objects. See smeObject for the components of the fit and plot.sme for visualisation options
Author(s)
Maurice Berk <maurice@mauriceberk.com>

References

See Also
smeObject, sme, sme.list, plot.sme

Examples

```r
## Not run: data(MTB)
## Not run: system.time(fits <- sme(MTB,numberOfThreads=1))
## Not run: sapply(fits,logLik)

## Not run: system.time(fits <- sme(MTB,numberOfThreads=10))
## Not run: sapply(fits,logLik)
```

`sme.list`
Carry out multiple independent smoothing-splines mixed-effects model fits simultaneously

Description

Carry out multiple independent smoothing-splines mixed-effects model fits simultaneously

Usage

```r
# S3 method for class 'list'
sme(object,tme,ind,verbose,F,lambdamu=NULL,lambdav=NULL,maxIter=500,
knots=NULL,zeroIntercept=F,deltaEM=1e-3,deltaNM=1e-3,criteria="AICc",
initial.lambdamu=10000,initial.lambdav=10000,normalizeTime=FALSE,numberOfThreads=-1,
...)
```

Arguments

- `object`
a list of vectors of observations
- `tme`
a list of vectors of time points corresponding to the observations in `object`
- `ind`
a list of factors (or vectors that can be coerced to factors) of subject identifiers corresponding to the observations in `object`
- `verbose`
if TRUE, debug information will be output while fitting the model(s)
- `lambda.mu`
either a single smoothing parameter to be used for the fixed-effect function for all fits, or a vector of smoothing parameters, one for each fit, or NULL if Nelder-Mead search should be used to find the optimal values for this and `lambda.v` for all fits
either a single smoothing parameter to be used for the random-effects functions for all fits, or a vector of smoothing parameters, one for each fit, or `NULL` if Nelder-Mead search should be used to find the optimal values for this and `lambda.v` for all fits

- `maxIter` maximum number of iterations to be performed for the EM algorithm
- `knots` location of spline knots. If `NULL`, an incidence matrix representation will be used. See ‘Details’
- `zeroIntercept` experimental feature. If `TRUE`, the fitted values of the fixed- and random-effects functions at the intercept will be zero
- `deltaEM` convergence tolerance for the EM algorithm
- `deltaNM` (relative) convergence tolerance for the Nelder-Mead optimisation
- `criteria` one of “AICc”, “AIC”, “BICN” or “BICn” indicating which criteria to use to score a particular combination of `lambda.mu` and `lambda.v` in the Nelder-Mead search
- `initial.lambda.mu` value to initialise the smoothing parameter for the fixed-effects to in the Nelder-Mead search. See details below
- `initial.lambda.v` value to initialise the smoothing parameter for the random-effects to in the Nelder-Mead search. See details below
- `normalizeTime` should time be normalized to lie in $[0, 1]$? See details below
- `numberOfThreads` The number of threads to use to fit the multiple smoothing-splines mixed-effects models simultaneously. When `numberOfThreads=-1`, as is the default, the OpenMP system will handle thread creation dynamically

Additional arguments, currently not used

Details

Prior to package version 0.9, starting values for the smoothing parameters in the Nelder-Mead search were fixed to $10000\$ for both `lambda.mu` and `lambda.v`. As it turns out, the appropriate scale for the smoothing parameters depends on the scale for `tme` and so `tme` will now automatically be rescaled to lie in $[0, 1]$ and much smaller initial values for the smoothing parameters will be used, although these can now optionally changed to achieve best results. To reproduce results obtained using previous versions of the package, set `initial.lambda.mu=10000`, `initial.lambda.v=10000` and `normalizeTime=FALSE`.

The default behaviour is to use an incidence matrix representation for the smoothing-splines. This works well in most situations but may incur a high computational cost when the number of distinct time points is large, as may be the case for irregularly sampled data. Alternatively, a basis projection can be used by giving a vector of `knots` of length (much) less than the number of distinct time points.

Value

A list of objects of class `sme`. See `smeObject` for the components of the fit and `plot.sme` for visualisation options
Author(s)
Maurice Berk <maurice@mauriceberk.com>

References

See Also
smeObject, sme, sme.data.frame, plot.sme

smeObject Fitted sme Object

Description
An object returned by the sme function, inheriting from class sme, representing a fitted smoothing-splines mixed-effects model

Value
An sme object must contain the following components.

call a list containing an image of the sme call that produced the object.
coefficients an n+l by p matrix where n is the number of subjects and p is the number of knots used in the spline basis. The first row of the matrix corresponds to the fitted values of the mean curve at the knots, and the remaining n rows correspond to the fitted values of the individual deviations from the mean curve at the knots.
fitted a vector of model fitted values corresponding to the original observations.
logLik the log-likelihood of the fitted model.
residuals a vector of model residuals.
nobs the number of observations.
data a data frame of the original data used to fit the model with variables y, tme and ind corresponding to observations, time points and subject identifiers respectively.
df a vector consisting of named components mu and v corresponding to the degrees of freedom of the mean and subject curves respectively.
smoothingParameters a vector of named components mu and v corresponding to the smoothing parameters for the mean and subject curves respectively.
parameters a list with named components sigmaSquared and D corresponding to the error variance and (unregularized) variance of the random-effects respectively.
iterations the number of iterations of the EM algorithm that ran before convergence (or the limit was reached)
smeObject

info

a numeric code indicating diagnostic information from the EM algorithm with zero indicating a successful run.

In some instances, an sme object may also contain the following components.

c format

knots

a vector of the knots used in the spline basis when they do not coincide with the unique design time points.

Author(s)

Maurice Berk <maurice.berk01@imperial.ac.uk>

See Also

sme
Index

AICc, 2
BICn, 3
getRoughnessMatrix, 4
inflammatory, 5
MTB, 5
plot.sme, 6, 7, 9, 10, 12, 14, 16
plotSmeDiagnostic, 6, 7, 9, 10
plotSmeModel, 6, 7, 8, 10
plotSmeRaw, 6, 7, 9, 9
sme, 10, 14, 16, 17
sme.data.frame, 12, 12, 16
sme.list, 12, 14, 14
smeObject, 12, 14, 16, 16