Package ‘spa’

February 20, 2015

Type Package
Title Implements The Sequential Predictions Algorithm
Version 2.0
Date 2010-7-22
Author Mark Culp
Maintainer Mark Culp <mculp@stat.wvu.edu>
Depends R (>= 2.10), cluster, MASS
Description Implements the Sequential Predictions Algorithm
License GPL
Repository CRAN
Date/Publication 2012-07-23 10:35:33
NeedsCompilation no

R topics documented:
coraAI .. 2
floyd ... 3
knnGraph .. 4
plot.spa ... 5
predict.spa .. 6
spa ... 7
spa.control .. 10
spa.sim ... 11
update.spa .. 12

Index 14
The Cora AI Data

Description

The coraAI data consists of a response, journal indication matrix, and co-citation network. This data is a subset of the Cora text mining project (refer to reference).

The observations are text documents that consist of 879 published papers about either Artificial Intelligence (AI) or Machine Learning (ML). The journal name for each document is available (8 journals and an other category). The observed co-citation graph is also available, where each vertex is a document (observation), and the edge is the count of citations in common between each document and all other documents.

The goal is to incorporate both the text information and co-citation information for the prediction of paper subject AI/ML. Another, interesting problem might be to predict the journal of the paper given the text information and the categorization.

Usage

data(coraAI)

Format

The coraAI data consists of three objects each discussed next.

class: categorization of the document (observation) as either AI or ML. Typically the response.

journals: indication of the document as published in a specific journal, (other, artificial-intelligence, machine-learning, nueral-computing, ieee-trans-nnet, ieee-tpami, j-artificial-intelligence-research, ai-magazine, JASA)

cite: the adjacency matrix of the co-citation network for these 879 documents.

Details

The spa is particularly appealing for this data since it fits a function directly to the graph and coefficient vector to the journals. Other approaches require convergence of the journal information into a graph for processing, which is unclear when the data is a binary design matrix.

Source

The data was generated using AWK scripting from the cora raw sweet (first reference). The journal names were fixed to obtain a useable representation (e.g. tpami, ieee tpami, pami are all ieee-tpami).

References

Description

‘uDist’ Computing shortest path distance (hop count) for an unweighted similarity graph where 1=edge and 0=no edge (i.e. invoke knnGraph with weight=FALSE)

‘floyd’ Floyd’s algorithm (SLOW) for computing shortest path distances (weighted hop count) for distance weighted graphs (i.e. invoke knnGraph with weight=TRUE).

Usage

floyd(x, verbose=FALSE)

uDist(g, k)

Arguments

x the adjacency n by n matrix (distance weighted)
verbose print the progress for Floyd’s algorithm
 g the adjacency n by n matrix (unweighted)
k input parameter for determining the maximum distance to compute (a distance of greater than k is taken as infinity)

Details

These implementations are not yet optimized for large data sets (>5000 observations)

Value

D Distance Matrix n by n

Author(s)

Mark Culp

See Also

spa knnGraph epsGraph
knnGraph

Convert a data matrix to a K-NN graph or epsilon graph

Description

These functions are designed to convert data sets or distance matrices to graphs.

Usage

knnGraph(x, k = 5, weighted = TRUE, dist = FALSE, ...)
epsGraph(x, eps = 0.2, weighted = TRUE, dist=FALSE, ...)

Arguments

x the data matrix, if dist=TRUE then x is a distance matrix
k the number of neighbors for a knn graph
eps size of fixed radius
weighted if TRUE the graph will be weighted. Note if TRUE use floyd for shortest path distance otherwise use fastDist.
dist when dist=TRUE then x is a distance matrix
... Extra parameters for the daisy(...) method

Details

The daisy function in cluster library is used primarily due to its speed and reliability.

Value

g A graph made from data x or distance matrix as input.

Note

This command relies on the cluster library

Author(s)

Mark Culp

References

See Also

spa knnGraph epsGraph
plot.spa

Plot the graph

Description

Plots the graph in two specified dimensions.

Usage

```r
## S3 method for class 'spa'
plot(x,xscale=NULL,g=NULL,vars=1:2,
     graph.grid=TRUE,plt.response,
     lcol=8,llwd=1,...)
```

Arguments

- `x` the spa object.
- `xscale` the dimension space for plotting. See spa for examples with ISOMap and data.
- `g` graph adjacency matrix.
- `vars` variables to read off of xscale, e.g. `xscale[,var]` (default=1:2)
- `graph.grid` whether or not the graph edges should be plotted.
- `plt.response` whether or not the graph edges should be plotted.
- `lcol` line color for graph edges (default=gray)
- `llwd` line thickness for graph edges (default=2)
- `...` additional parameters for plot

Author(s)

Mark Culp

References

predict.spa

Inductive Predict Procedure For SPA

Description

This implements the inductive prediction for an spa object. The impact of the observation(s) on the existing labeled and unlabeled data is ignored.

For transductive prediction use update function.

Usage

```r
## S3 method for class 'spa'
predict(object, xnew, gnew, type = c("vector", "probs", "both"), ...)
```

Arguments

- `object`: an existing object of type spa
- `xnew`: the new xdata to predict, of dimension `ngXdim(object[2])` (only applicable if object was called with x data)
- `gnew`: the new graph links. The dimension on this matrix is `ngXdim(object)[1]` with `ng` as the number of observations to predict.
- `type`: the type of prediction to return.
- `...`: additional arguments passed into the function.

Author(s)

Mark Culp

References

Examples

```r
## Use simulated example (two moon) and generate a contour plot of the border
set.seed(100)
dat=spa.sim(type="moon")

L=which(!is.na(dat$x))
U=which(is.na(dat$x))
Dij=as.matrix(daisy(dat[,1]))

## Use spa to train with a supervised/transductive kernel smoother
gsup<-spa(dat$x[L], graph=Dij[L,L],control=spa.control(gcv="IGCV"))
gsemi<-spa(dat$x, graph=Dij,control=spa.control(gcv="aGCV"))
```
spa

sequential prediction algorithm

Description

This performs the sequential predictions algorithm ‘spa’ in R as described in the references below. It can fit a graph only estimate \(y=f(G) \) and graph-based semi-parametric estimate \(y=Xb+f(G) \). Refer to the example below.

The approach distinguishes between inductive prediction (predict function) and transductive prediction (update function). This is documented in the user manual and references.

Usage

```r
spa(y,x,graph,type=c("soft","hard"),kernel=function(r,\lambda=0.1)\{exp(-r/\lambda)\}).
global,control,...
```
Arguments

- **y**
 response of length \(m \leq n \)

- **x**
 \(n \) by \(p \) predictor data set (assumed \(XU \) is in space spanned by \(XL \)).

- **graph**
 \(n \) by \(n \) dissimilarity matrix for a graph.

- **type**
 whether soft labels (squared error), or hard labels (exponential). Soft is default.

- **kernel**
 kernel function (default=heat)

- **global**
 (optional) the global estimate to lend weight to (default is mean of known responses).

- **control**
 spa control parameters (refer to `spa.control` for more information)

...
Currently ignored

Details

If the response is continuous the algorithm only uses soft labels (hard labels is not appropriate or sensible).

In classification the algorithm distinguishes between hard and soft labeled versions. To use hard labels both `type=\"hard\"` must be set and the response must be two leveled (note it does not have to be a factor, also classification of a set-aside \(x \) data is not possible). The main issue between these involves rounding the PCE at each iteration (hard=yes, soft=no). If soft labels are used then the base algorithm converges to a closed form solution, which results in fast approximations for GCV, and direct implementation of that solution as opposed to iteration (currently implemented). For hard labels this is not the case. As a result approximate GCV and full GCV are not properly developed and if specified the procedure performs them with the soft version for parameter estimation.

The update function also employs a distinction between hard/soft labels. For hard labels the algorithm employs the `pen=lasso` (hyperbolic L1 penalty) whereas soft labels employs the `pen=ridge`. One can also use the ridge penalty with hard labels but it is uncertain why this would be considered.

The code provides semi-supervised graph-based support for R.

Note

To control parameter estimation, the parameters `lmin`, `lmax` and `ldepth` are set through `spa.control`. For this procedure GCV is used as the criteria, where unlabeled data influence GCV. Use `spa.control` to set this as well. Options include, `agcv` for approximate transductive gcv, `fgcv` for gcv applied to the full smoother, `lgcv` for labeled data only or supervised gcv, and `tgcv` for pure transductive gcv (slow). The `fgcv` flag has been depreciated. Refer to `spa.control` and the references below for more.

References

Examples

```r
## SPA in Multi-view Learning -- (Y,X,G) case.
## (refer to coraAI help page for more information).
## 1) fit model Y=f(G)+epsilon
## 2) fit model Y=XB+f(G)+epsilon

data(coraAI)
y=coraAI$class
x=coraAI$ journals
g=coraAI$cite

## remove papers that are not cited
keep<-which(as.vector(apply(g,1,sum)>1))
y<-y[keep]
x<-x[keep,]
g=g[keep,keep]

## set up testing/training data (3.5% stratified for training)
set.seed(100)
n<-dim(x)[1]
N<-as.vector(apply(x,2,sum))
Ls<apply(1:length(N),function(i)sample(which(x[,i]==1),ceiling(0.035*N[i])))
L=as.matrix(apply(g,1,mean))
for(i in 1:length(Ns)) L[c(Ls[i])]

## Fit model on G
A1<as.matrix(g)
gc=spa(y1,graph=A1,control=spa.control(dissimilar=FALSE))
gc

## Compute error rate for G only
tab=table(fitted(gc)[U]>0.5,y[U])
1-sum(diag(tab))/sum(tab)

## Note problem
sum(apply(A1[U,U],1,sum)==0)/(n-m)*100  ##Answer: 39.79849

## 39.8% of unlabeled observations have no connection to a labeled one.

## Use Transductive prediction with SPA to fix this with parameters k,l
pred=update(gc,ynew=y1,gnew=A1,dat=list(k=length(U),l=Inf))
tab=table(pred[U]>0.5,y[U])
1-sum(diag(tab))/sum(tab)

## Replace earlier gj with the more predictive transductive model
gc=update(gc,ynew=y1,gnew=A1,dat=list(k=length(U),l=Inf),trans.update=TRUE)
gc
```
spa.control

Control Parameters for spa

Description

Controls various aspects of fitting the 'spa' object.

Usage

```r
spa.control(eps=1e-6,maxiter=20,gcv=c("1GCV","tGCV","fGCV","aGCV"),
            lqmax=0.2,lqmin=0.05,ldepth=10,lmin=0.05,lgrid=NULL,
            lval=NULL,dissimilar=TRUE,pce=FALSE,adjust=0,warn=FALSE,...)
```

Arguments

- **eps**: the tolerance parameter for spa using a type='class' argument.
- **maxiter**: the maximum number of iterations to run the algorithm using type='class' argument. This parameter forces the algorithm to stop even if eps is not met.
- **gcv**: aGCV=approximate GCV using the smoother SLL+^t(SU)*SUL, tGCV=GCV using the smoother SLL+SLUsolve(I-SUU,SUL) (can be slow), IGCV=GCV using the supervised smoother (fast but not that good), and fGCV=approximate GCV using the smoother S with approximation above (this is no longer documented but it is still implemented).
- **lqmax**: max quantile on the density of distance for data-driven estimation
- **lqmin**: min quantile on the density of distance for data-driven estimation
- **ldepth**: the depth of the search for divide and conquer parameter estimation
- **lmin**: the minimum value, in-case lqmin is negative
lgrid: if set to an integer, then the divide and conquer approach is bypassed.
lval: if set then the smoothing parameter is lval.

dissimilar: if the edges represent similarity then set this to TRUE. This flag is intended for use with the Laplacain smoother as input (for SPS this flag is ignored and the graph is assumed to be dissimilar). If the flag is FALSE then the supplied kernel is used to convert the graph to similarity.

warn: if TRUE then the procedure warns the user that a ginv will be used in the matrix inversion (i.e. the matrix is not invertible).

pce: parameter adjust is meant for adjusting hard probability class estimates to soft (i.e. if p(z)=1 then p(z)=0.9999), for GCV estimation, this pushes GCV away from selecting smaller values.

adjust: apply adjustment \(W = W + \text{adjust} \).

... mop up additional parameters passed in.

Note
Keep in mind, that for exponential loss (hard) we are being somewhat non-conventional by using GCV at all, i.e. loss/df where df=1-tr/m (m is known data size).

Author(s)
Mark Culp

References

Description
An easy function to access the "moon" data set used to illustrate this package.

Usage

```r
spaNsim(n=206,m=3,p=8,type=c("moon","supervised"),nonoise=TRUE)
```

Arguments

- `n`: the total number of x observations to generate
- `m`: the number of labeled cases (m<n) to generate
- `p`: the diminsion on the x data. First two columns are meaningful, others are noise.
- `type`: the unlabeled border to generate
- `nonoise`: whether or not the addiotional noisy columns should be returned
- `...`: additional arguments passed into the function
Author(s)

Mark Culp

References

Examples

```r
set.seed(100)
dat=spa.sim(type="moon")

L=which(!is.na(dat$y))
U=which(is.na(dat$y))

## Fit data
gsemi<-spa(dat$y,graph=as.matrix(daisy(dat[-1])))
gsemi
```

update.spa

Update procedure for transductive prediction with the SPA

Description

This implements the transductive prediction for an spa object. It performs regularization/region approach for transductive prediction. In addition it can also updates an existing spa object with new transductive estimate.

Usage

```r
## S3 method for class 'spa'
update(object,ynew,xnew,gnew,
    type=c("vector","probs","coef","all"),
    reg=c("ridge","hlasso"),trans.update=FALSE,
    dat=list(k=0,l=Inf),verbose=FALSE,FUN=sum,...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>an object of type spa</td>
</tr>
<tr>
<td>ynew</td>
<td>an object of type spa</td>
</tr>
<tr>
<td>xnew</td>
<td>an object of type spa</td>
</tr>
<tr>
<td>gnew</td>
<td>an object of type spa</td>
</tr>
<tr>
<td>type</td>
<td>the type of predictions in classification, classes, probabilities or both. In the case of both the object will return an additional penalty vector corresponding to the rate function for each case.</td>
</tr>
</tbody>
</table>
reg
for regression it is automatically taken as a ridge penalty. In the case of classification one can use either ridge or the hyperbolic l1 penalty (hlasso).

trans.update

verbose

dat
data driven estimation routine consists of list k for the number of vertex sets, and l for the regularization (see reference). default dat=list(k=0,l=Inf)

FUN
measure used to sort WUL, the unlabeled-labeled partition. The FUN=sum multiplies WUL times a vector of ones, others may include max.

Author(s)
Mark Culp

References

Examples

```r
## Use simulated example (two moon)
set.seed(100)
dat= spa.sim(type="moon")

## Use spa to train with a supervised/transductive kernel smoother
gsemi= spa(dat$y, graph=as.matrix(daisy(dat[,1])))

## Use spa to update the object with new data
dat=rbind(dat,spa.sim(100,0))
gsemi=update(gsemi, ynew=dat$y, as.matrix(daisy(dat[,1])), trans.update=TRUE)
```
Index

+Topic **classes**
 - floyd, 3
 - knnGraph, 4
 - plot.spa, 5
 - predict.spa, 6
 - spa, 7
 - spa.control, 10
 - spa.sim, 11
 - update.spa, 12
+Topic **datasets**
 - coraAI, 2
+Topic **methods**
 - floyd, 3
 - knnGraph, 4
 - plot.spa, 5
 - predict.spa, 6
 - spa, 7
 - spa.control, 10
 - spa.sim, 11
 - update.spa, 12
+Topic **models**
 - floyd, 3
 - knnGraph, 4
 - plot.spa, 5
 - predict.spa, 6
 - spa, 7
 - spa.control, 10
 - spa.sim, 11
 - update.spa, 12

coraAI, 2
epsGraph, 3, 4
epsGraph (knnGraph), 4
floyd, 3
ftf.fit(spa), 7
knnGraph, 3, 4, 4
plot.spa, 5

predict.spa, 6
print.spa(spa), 7
protLoc (coraAI), 2
spa, 3, 4, 7
spa.control, 10
spa.sim, 11
uDist (floyd), 3
update.spa, 12