Package ‘spacom’
February 11, 2016

Type Package

Title Spatially Weighted Context Data for Multilevel Modelling

Version 1.0-5

Date 2016-02-10

Description Provides tools to construct and exploit spatially weighted context data. Spatial weights are derived by a Kernel function from a user-defined matrix of distances between contextual units. Spatial weights can then be applied either to precise contextual measures or to aggregate estimates based on micro-level survey data, to compute spatially weighted context data. Available aggregation functions include indicators of central tendency, dispersion, or inter-group variability, and take into account survey design weights. The package further allows combining the resulting spatially weighted context data with individual-level predictor and outcome variables, for the purposes of multilevel modelling. An ad hoc stratified bootstrap resampling procedure generates robust point estimates for multilevel regression coefficients and model fit indicators, and computes confidence intervals adjusted for measurement dependency and measurement error of aggregate estimates. As an additional feature, residual and explained spatial dependency can be estimated for the tested models.

License GPL (>= 2)

LazyLoad yes

Depends R (>= 2.3.2)

Imports methods, spdep, foreach, iterators, lme4, nlme, Matrix

NeedsCompilation no

Author Till Junge [aut, cre],
 Sandra Penic [aut],
 Mathieu Cossuta [aut],
 Guy Elcheroth [aut],
 Stephanie Glaeser [ctb],
 Davide Morselli [ctb]

Maintainer Till Junge <till.junge@altermail.ch>

Repository CRAN

Date/Publication 2016-02-11 08:27:52
Description

The package provides tools to construct and exploit spatially weighted context data. Spatial weights are derived by a Kernel function from a user-defined matrix of distances between contextual units. Spatial weights can then be applied either to precise contextual measures or to aggregate estimates based on micro-level survey data, to compute spatially weighted context data. Available aggregation functions include indicators of central tendency, dispersion, or inter-group variability, and take into account survey design weights. The package further allows combining the resulting spatially weighted context data with individual-level predictor and outcome variables, for the purposes of multilevel modelling. An ad hoc stratified bootstrap resampling procedure generates robust point estimates for multilevel regression coefficients and model fit indicators, and computes confidence intervals adjusted for measurement dependency and measurement error of aggregate estimates. As an additional feature, residual and explained spatial dependency can be estimated for the tested models.
Details

Package: spacom
Type: Package
Version: 1.0-0
Date: 2012-12-21
Authors: Till Junge
 Sandra Penic
 Mathieu Cossuta
 Guy Elcheroth
Contributors: Davide Morselli
 Stephanie Glaeser
Maintainer: Till Junge <till.junge@gmail.com>
License: GPL (>= 2)
LazyLoad: yes
Depends: methods, R (>= 2.14-0), spdep, foreach, lme4, boot, classInt, iterators, rgeos

The package is structured by seven core functions, organised along four logical steps. In each of the first three steps three types of input data required for multilevel modelling with spatially weighted context data are successively imported and transformed, to generate output objects required in subsequent steps:

Step 1: Creation of spatial weighting matrices. User-specified Kernel functions and bandwidth values (function \texttt{weightmatrix}) are applied to one or several user-defined distance matrices.

Step 2: Construction of spatially weighted context data. The spatial weights generated in step 1 are combined with (a) imported precise contextual measures (function \texttt{spawexact}) and/or (b) imported micro-level survey data to compute contextual estimates through a user-specified aggregation function (function \texttt{spawaggregate}).

Step 3: Multilevel modelling with spatially weighted context data. Imported individual-level predictor and outcome variables are combined with the precise (functions \texttt{mlspawexact} and \texttt{resamplemlspawexact}) or aggregate (function \texttt{resampleMLSpawAggregate}) context data generated in step 2.

Finally, contextual residuals from multilevel models can be re-used in an additional, fourth step to compute estimates of explained spatial dependency (function \texttt{mlspawresidmoran}).

The package furthermore provides a fast-track procedure, which condenses steps 1 to 3 and directly generates point estimates for regression coefficients across a range of different bandwidth values, in order to explore the scale-dependency of contextual effects prior to more intensive analyses (function \texttt{exploremlspawexact}).

Author(s)

Till Junge, Sandra Penic, Mathieu Cossuta, Guy Elcheroth
Maintainer: Till Junge <till.junge@gmail.com> Contributors: Stephanie Glaeser, Davide Morselli

References

collective experiences. \textit{LIVES Working Papers, 19}.

\section*{Examples}

\begin{verbatim}
Testing the model described in Elcheroth et al (2012), page 25, Equation 9.4
Collective guilt assignment (outcome) is predicted by a series of individual level predictors,
and two contextual predictors: risk of war victimization weighted by geographical proximity and
common territorial identification

DATA PREPARATION
Import data
load individual level data
data(traces_ind)

exclude variable "cg_acc" and missing values
traces_ind <- na.exclude(traces_ind[, -6])

load contextual indicator for aggregation
data(traces_event)

load distance matrices
data(d_geo)
data(d_ident)

EXPLORATORY ANALYSIS

Examining the impact of the risk of war victimization weighted by geographical
proximity weights with bandwidths of 25, 50 and 100 km
explo.wv <- ExploreMLSpawAggregate(individual.level.data = traces_ind,
 contextual.name = "w_all",
 contextual.data = traces_event,
 context.id = "area.name",
 formula = cg_ass ~ victim_d + comb_d +
 male + age_1990 + high_school + higher_edu +
 (1 | area.name),
 distance.matrix = d_geo,
 multilevel.bandwidths = c(25, 50, 100),
 design.weight.names = "weight",
 aggregation.function = "weighted.mean",
 kernel = NULL)

STEP 1: Create spatial weights

geographical proximity, bandwidth=50
geow.50 <- WeightMatrix(d_geo, bandwidth=50)

common territorial identification, bandwidth=2
w.id <- WeightMatrix(d_ident, bandwidth=2)

STEP 2: Create spatially weighted aggregated indicator of risk of war victimization
\end{verbatim}
aggregation functions

```
wv.agg <- SpawAggregate(contextual.data=traces_event,
    context.id="area.name",
    contextual.names=c("w_all", "w_all"),
    contextual.weight.matrices=list(geo.w.50, w.id),
    aggregation.functions="weighted.mean",
    design.weight.names="weight",
    nb.resamples=2)

## If wanted, the names of aggregated indicators in wv.agg can be changed
names(wv.agg) <- c("w.50", "w.id")

mla.results <- ResampleMLSpawAggregate(individual.level.data=traces_ind,
    context.id="area.name",
    formula= cg_ass ~ victim_d + comb_d + male + age_1990 +
    high_school + higher_edu + (1|area.name) + wv.50 + wv.id,
    aggregates = wv.agg, precise.data=NULL)

## STEP 4: Test the residual spatial dependency of the previous model
mla.results.moran <- MLSpawResidMoran(ml.spaw.obj=mla.results,
    distance.matrix=d_geo,
    bandwidths=c(25,50,100,200))

## Plotting spatial variogram with the values in mla.results.moran
## See plot() and par() for details
## Not run:
plot(mla.results.moran[,1], xaxt="n", xlab="Bandwidth values", ylab="Moran's I", type="b")
axis(side=1, at=1:nrow(mla.results.moran), labels=rownames(mla.results.moran))
## End(Not run)
```

aggregation functions

Aggregation functions provided by spacom

Description

Spacom provides a set of aggregation functions which can be used with the functions `SpawAggregate` and `ExploreMLSpawAggregate`. See **Details** for descriptions of each function. Note that you are not restricted to these.

User supplied aggregation functions can be used if they have the form

\[x_w = f(x, w, ...) \]

where \(x \) is the data to be aggregated, \(w \) the weights to be applied. Any number of additional arguments may also be used (see argument `additional.args` in `SpawAggregate` for details on additional arguments). The return value \(x_w \) must be a scalar value (i.e. not a vector).
Usage

wt.sd(data, weights=rep(1, length(data)))
wt.var(data, weights=rep(1, length(data)))
wt.gini(data, weights=rep(1, length(data)))
wt.gini.categ(data, weights=rep(1, length(data)))
wt.Theil(data, weights=rep(1, length(data)))
wt.RS(data, weights=rep(1, length(data)))
wt.Atkinson(data, weights=rep(1, length(data)))
wt.gini.group(data, weights=rep(1, length(data)), groups)

Arguments

data A vector of data to be aggregated
weights A vector of weights. These weights are computed by combining the spatial weights and design weights for each context.
groups name of the column used to group data (only wt.group.gini)

Details

1. wt.var(data, weights) Computes the weighted variance according to
 \[
 \text{Var}(x) = \frac{\sum_{i=1}^{n} (w_i \cdot (x_i - \mu)^2)}{\sum_{i=1}^{n} w_i}
 \]
 where the weighted mean is \(\mu \)
 \[
 \mu = \frac{\sum_{i=1}^{n} w_i \cdot x_i}{\sum_{i=1}^{n} w_i}
 \]
2. wt.sd(data, weights) Computes the weighted standard deviation according to
 \[
 \sigma = \sqrt{\text{Var}(x)}
 \]
3. wt.gini The weighted Gini coefficient is given by
 \[
 G = \frac{1}{2\mu} \sum_{i,j} w_i w_j \, |x_i - x_j|
 \]
 where \(\mu \) is
 \[
 \mu = \sum_{i} w_i x_i
 \]
4. wt.gini.categ Spacom also allows for the computation of inequality indicators for categorical variables. In this case, one has no \(x_i \) value but only the weighted frequencies \(f_i \) for each category. For that case, the Gini becomes
 \[
 G = 1 - \sum_{i} f_i^2
 \]
 The weighted frequencies are computed from data and weights
5. wt.gini.group get from guy
aggregation functions

Value

A scalar value of type numeric. For user-supplied aggregation functions, this can potentially be of a different type.

Author(s)

Mathieu Cossuta, Till Junge, Sandra Penic, Guy Elcheroth

References

Examples

```r
## Creating indicators of spatially weighted inequalities

## load individual level data and remove missings
data(traces_ind)
traces_ind <- na.exclude(traces_ind)

## create variable "simulated income" in the dataset
## the variable is created only in demonstrative purposes,
## and it is not part of the TRACES dataset
traces_ind$sim_inc <- rnorm(nrow(traces_ind), 1000, 100)

## Step 1: Load distance matrix and create weights
data(d_geo)
geow.50 <- WeightMatrix(d_geo, bandwidth=50)

## Step 2: Spatially weighted gini for simulated income
si.gini <- SpawAggregate(contextual.data=traces_ind,
                          context.id="area.name",
                          contextual.names="sim_inc",
                          contextual.weight.matrices=geow.50,
                          aggregation.functions="wt.gini",
                          design.weight.names=NULL,
                          nb.resamples=5)

## Step 2: Spatially weighted gini for groups (Spatially weighted inequalities
## in simulated income for men and women)

si.gini.gr <- SpawAggregate(contextual.data=traces_ind,
                            context.id="area.name",
                            contextual.names="sim_inc",
                            contextual.weight.matrices=geow.50,
                            aggregation.functions="wt.gini.group",
                            additional.args="male",
                            design.weight.names=NULL,
                            nb.resamples=5)
```
d_ethnic

CH1903 CH1903

Description

Swiss square projection

Usage

data(CH1903)

Format

The format is: Formal class ‘CRS’ [package "sp"] with 1 slots ..
@projargs: chr " +init=world:CH1903 +proj=somerc +lat_0=46d57'8.660"N +lon_0=7d26'22.500"E +ellps=bessel +x_0=600000 +y_0=200000 +k_0=1. +no_"

A distance matrix for TRACES areas

Description

A matrix of dimension 80 × 80, containing distances \(d_{ij} \) between centers of TRACES areas \(i \) and \(j \) defined as dissimilarity in the ethnic composition of a population.

Usage

d_ethnic

Source

Examples

data(d_ethnic)
w.eth <- WeightMatrix(distance.matrix=d_ethnic, bandwidth=1)
d_geo

A distance matrix for TRACES areas

Description

A matrix of dimension 80×80, containing geographical distances (in km) d_{ij} between centers of TRACES areas i and j.

Usage

d_geo

Source

Examples

data(d_geo)
geow.50 <- WeightMatrix(distance.matrix=d_geo, bandwidth=50)

d_ident

A distance matrix for TRACES areas

Description

A matrix of dimension 80×80, containing distances d_{ij} between centers of TRACES areas i and j defined as a lack of common identification.

Usage

d_ident

Source

Examples

data(d_ident)
w.id <- WeightMatrix(distance.matrix=d_ident, bandwidth=2)
d_migr

A distance matrix for TRACES areas

Description

A matrix of dimension \(80 \times 80\), containing distances \(d_{ij}\) between centers of TRACES areas \(i\) and \(j\) defined as a lack of contact between two populations.

Usage
d_migr

Source

Examples
data(d_migr)
w.migr <- WeightMatrix(distance.matrix=d_migr, bandwidth=25)

ExploreMLSpawExact

Exploratory multilevel analysis with spatially weighted context data

Description

These exploratory functions provide fast-track procedures, which condense steps 1 to 3. On the basis of precise contextual measures and/or micro-level survey data for estimating contextual indicators, a distance matrix between contextual units, and individual outcomes and (optional) predictor variables, it directly generates point estimates for regression coefficients of a user-defined multilevel model, for a range of different bandwidth values. This function can be used to first explore the scale of relevant contextual effects, before parametrising the model more precisely, calculating (computationally expensive) confidence intervals and estimating spatial dependency for specific models, on a step-by-step basis.

Usage

ExploreMLSpawExact(individual.level.data, contextual.name, context.id, formula, distance.matrix, multilevel.bandwidths, precise.data,
kernel = NULL,
verbose = TRUE)

ExploreMLSpawAggregate(individual.level.data,
contextual.name,
contextual.data,
context.id, formula,
distance.matrix,
multilevel.bandwidths,
design.weight.names = NULL,
aggregation.function = "weighted.mean",
kernel = NULL,
additional.args = NULL,
verbose = TRUE)

Arguments

individual.level.data
A data.frame containing the individual level predictor and outcome variables. The data must be numeric (logical, integer, or plain numeric). There must not be any missing values, NaNs, NULLs or NAs.

contextual.name
A name of contextual variable to be weighted.

contextual.data
A data.frame consisting of micro-level data to generate contextual indicators by aggregation and containing a column named context.id with the context ID variable. This is an individual level dataframe. The data must be numeric (logical, integer, or plain numeric). There must not be any missing values, NaNs, NULLs or NAs. By default set to NULL.

context.id
The name of the context ID variable. This variable allows matching contextual units from different data sets (contextual.data, individual.level.data, distance.matrix). Values can by of any type but need to be defined consistently across data sets.

formula
Formula description of the model. The formula is handed down to lmer function of the package lme4. Refer to the documentation of lmer for details.

distance.matrix
A square matrix of dimension $n \times n$, where n is the number of contextual units.

multilevel.bandwidths
A vector of scalar numeric values specifying the bandwidth h

precise.data
A data.frame containing the precise contextual data. There must not be any missing values, NaNs, NULLs or NAs. By default set to NULL.

design.weight.names
A name of optional design weight at the individual level used for aggregation (for example, for a weighted mean). By default set to NULL.

aggregation.function
A name of aggregation function. Function takes either
1. 1 argument in which case the corresponding individual design weight is NULL,
2. 2 arguments in which case the second argument is taken from the corresponding individual design weight. Defaults to "mean".

kernel

A function applied to the distance matrix. By default NULL, in which case the kernel function

\[w_{ij} = f(d, h) = \left(\frac{1}{2} \right) \frac{d_{ij}^2}{h^2} \]

is used, where \(w_{ij}, d_{ij}, h \) are elements of the weight matrix \(W \), of the distance matrix \(D \) and the bandwidth \(h \). User-supplied kernel functions have to take 2 arguments and return a matrix of the same dimension as the first argument.

additional.args

For aggregation functions which take additional arguments (that is in addition to the data to aggregate and design weights), they can be specified here. **additional.args** defaults to NULL.

verbose

if TRUE, progress information and an estimate of the remaining computing time is shown at the screen. Defaults to TRUE

Details

`ExploreMLSpawExact` performs exploratory multilevel analysis with a precise spatially weighted contextual indicator. `ExploreMLSpawAggregate` performs analysis with an aggregated spatially weighted contextual indicator. Both functions provide only conventional statistical estimates and accept only one contextual predictor.

Value

A list of `MLSpawExactOutput-class` objects

Author(s)

Till Junge, Sandra Penic, Guy Elcheroth

References

Examples

```r
# load individual level data, remove collective guilt assignment from the # data frame, and remove NA's
```
data(traces_ind)

traces_ind <- traces_ind[,-7]
traces_ind <- na.exclude(traces_ind)

load precise contextual indicator
data(homog_census)

load distance matrix
data(d_geo)

perform ExploreMLSpawExact
acc_homog <- ExploreMLSpawExact(
 individual.level.data=traces_ind,
 contextual.name="Homog_00",
 context.id="area.name",
 formula=cg_acc ~ victim_d + comb_d + male + age_1990 + high_school +
 higher_edu + (1|area.name),
 precise.data=homog_census,
 distance.matrix=d_geo,
 multilevel.bandwidths=c(50, 100))

Description

describe me

Usage

data(GPS)

Format

The format is: Formal class 'CRS' [package "sp"] with 1 slots ..@ projargs: chr "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

Examples

data(GPS)
maybe str(GPS) ; plot(GPS) ...
dataset homog_census

Description
A dataset with an indicator of ethnic homogeneity in TRACES areas of former Yugoslavia, calculated on the basis of national censuses and official estimates from 2000 to 2006. It should be used as a precise contextual indicator in multilevel analyses.

Usage
homog_census

Format
The dataframe contains the following columns:
- area - context ID variable, ranges from 1 to 80
- homog_PP - proportion of largest ethnic group in the area

Source
Our own calculation based on national censuses and official estimates from 2000 to 2006.

Examples
```r
data(homog_census)
```

MLSpawExact

Standard multilevel analysis applied to spatially weighted context data

Description
Integrates spatially weighted context data as higher-level predictors in multilevel analysis and produces conventional statistical estimates.

Usage
```r
MLSpawExact(individual.level.data, context.id, formula, precise.data=NULL, verbose=TRUE, ...)
```
Arguments

individual.level.data
A data.frame containing the individual level predictor and outcome variables. The data must be numeric (logical, integer, or plain numeric). There must not be any missing values, NaNs, NULLs or NAs.

context.id
The name of the context ID variable. This variable allows matching contextual units from different data sets (precise.data.individual.level.data). Values can by of any type but need to be defined consistently across data sets.

formula
Formula description of the model. The formula is handed down to lmer function of the package lme4. Refer to the documentation of lmer for details.

precise.data
A data.frame containing the precise contextual data. There must not be any missing values, NaNs, NULLs or NAs. By default set to NULL.

verbose
if TRUE, progress information and an estimate of the remaining computing time is shown at the screen. Defaults to TRUE.

... All additional named arguments are handed through to the function lme4:lmer (for example, REML=TRUE).

Value
An object of class MLSpawExactOutput-class

Author(s)
Till Junge, Sandra Penic, Mathieu Cossuta, Guy Elcheroth

References

Examples

Spatially weighted multilevel analysis, with standard estimates of
standard errors.
It is step-3 function
Model with two contextual predictors, treated as precise,
predicting collective guilt acceptance.

Data preparation
load individual level data, remove collective guilt assignment from the
data frame, and remove NA's
data(traces_ind)

traces_ind <- traces_ind[,-7]
traces_ind <- na.exclude(traces_ind)

load contextual indicator for aggregation
data(traces_event)
load precise contextual indicator
```r
data(homog_census)
```

load distance matrix
```r
data(d_geo)
```

Step 1: Create spatial weights
```r
geow.100 <- WeightMatrix(d_geo, bandwidth=100)
```

Step 2: Create spatially weighted contextual indicators

from micro-level survey data (treated as precise)
```r
aggregate <- SpawAggregate(contextual.data=traces_event,
context.id="area.name",
contextual.names='w_all',
contextual.weight.matrices=geow.100,
aggregation.functions="weighted.mean",
design.weight.names="weight",
nb.resamples=0)
```

from precise indicator
```r
weighted.homog.census <- SpawExact(precise.data=homog_census,
context.id="area.name",
contextual.names="Homog_00",
contextual.weight.matrices=geow.100)
```

merge aggregated and weighted data
```r
context.data <- merge(aggregate, weighted.homog.census, by="area.name")
```

Step 3: Perform MLSpawExact with two spatially weighted indicators
```r
acc_w_homog.100 <- MLSpawExact(individual.level.data=traces_ind,
context.id="area.name",
formula=cg_acc ~ victim_d + comb_d + male + age_1YYP +
high_school + higher_edu + (1|area.name) + w_all.1 + Homog_00.1,
p Precise.data=context.data)
```

MLSpawExactOutput-class

Class "MLSpawExactOutput"

Description

Output object of the function MLSpawExact.

Objects from the Class

Objects can be created by calls of the form `new("MLSpawExactOutput", ...)."`
MLSpawExactOutput-class

Slots
- `lme`: Object of class "merMod"
- `beta`: Object of class "numeric"

Methods
- `AIC` signature(object = "MLSpawExactOutput"): `merMod` of `lme4`
- `BIC` signature(object = "MLSpawExactOutput"): `merMod` of `lme4`
- `fixef` signature(object = "MLSpawExactOutput"): `merMod` of `lme4`
- `print` signature(x = "MLSpawExactOutput")
- `ranef` signature(object = "MLSpawExactOutput"): `merMod` of `lme4`
- `show` signature(object = "MLSpawExactOutput")
- `summary` signature(object = "MLSpawExactOutput")
- `VarCorr` signature(x = "MLSpawExactOutput"): `merMod` of `lme4`

Author(s)
- Till Junge

Examples

```r
## Perform MLSpawExact

## Import and prepare data (see details in MLSpawExact)

data(traces_ind)
traces_ind <- traces_ind[,,-7]
traces_ind <- na.exclude(traces_ind)
data(traces_event)

data(homog_census)
data(d_geo)

## Step 1: Create spatial weights
gew.100 <- WeightMatrix(d_geo, bandwidth=100)

## Step 2: Create spatially weighted contextual indicators
aggregate <- SpawAggregate(contextual.data=traces_event,
context.id="area.name",
contextual.names='w_all',
contextual.weight.matrices=gew.100,
aggregation.functions="weighted.mean",
design.weight.names="weight",
nb.resamples=0)

## Step 3: Perform MLSpawExact with the spatially weighted indicator
acc_w100 <- MLSpawExact(individual.level.data=traces_ind, context.id="area.name",
```
```r
formula = cg_acc ~ victim_d + comb_d + male + age_1YYP +
          high_school + higher_edu + (1|area_name) + w_all.1,
          precise.data=aggregate)

## acc_w100 is an object of class MLSpawExactOutput
class(acc_w100)

## to assess standardized coefficients
acc_w100@beta

## look at the fitted mixed-effect model :
acc_w100@lme

## to assess non-standardized fixed coefficients
fixef(acc_w100@lme)

## to assess the deviance of the fitted model
deviance(acc_w100@lme)

## for details about slots within @lme see ?merMod-class(lme4)
```

MLSpawResidMoran

Testing the (residual) spatial dependency

Description

This step-4 function uses the contextual residuals of (spatially weighted) multilevel models to estimate the spatial dependency left unexplained by the model. The spatial dependency is operationalised by Moran's I coefficient for spatial auto-correlation, which can be recalculated for a range of different bandwidth values (which, in a similar way to spatial weights used for the creation of the context data, allow to parametrise the scale at which spatial dependency is being estimated). The part of explained spatial dependency can be obtained by comparison with the spatial dependency of the intercept-only, or with any other reference model, at the same bandwidth value.

Usage

```r
MLSpawResidMoran(ml.spaw.obj,
              distance.matrix,
              bandwidths,
              kernel = NULL,
              confidence.intervals = c(0.95),
              verbose = TRUE)
```

Arguments

- `ml.spaw.obj` ResampleMLSpawOutput, MLSpawExactOutput, or matrix of residuals
- `distance.matrix` square matrix of dimension $n \times n$, where n is the number of contextual units.
- `bandwidths` vector of bandwidths for which to compute Moran’s I.
kernel function applied to the distance matrix. By default NULL, in which case the kernel function

\[w_{ij} = f(d, h) = \left(1 - \frac{d_{ij}^2}{2h^2}\right) \]

is used, where \(w_{ij}, d_{ij}, h \) are elements of the weight matrix \(W \), of the distance matrix \(D \) and the bandwidth \(h \). User-supplied kernel functions have to take 2 arguments and return a matrix of the same dimension as the first argument.

confidence.intervals

vector of confidence intervals. Defaults to \(c(0.95) \) which corresponds to 95 %.

verbose

if TRUE, progress information and an estimate of the remaining computing time is shown at the screen. Defaults to TRUE

Value

A matrix containing Moran’s I’s

Author(s)

Till Junge, Sandra Penic, Guy Elcheroth

References

Examples

Residual spatial autocorrelation
It is step-4 function
for residuals from ResampleAggregateSpawML

Data preparation

load individual level data, remove collective guilt assignment for the
data frame, and remove NA’s
data(traces_ind)
traces_ind <- traces_ind[, -7]
traces_ind <- na.exclude(traces_ind)

load contextual indicator for aggregation
data(traces_event)

load precise contextual indicator
data(homog_census)

load distance matrix
data(d_geo)
Step 1: Create spatial weights
```
geow.100 <- WeightMatrix(d_geo, bandwidth=100)
```

Step 2: Compute spatially weighted aggregated contextual indicator
```
wv.ag.100 <- SpawAggregate(
  contextual.data = traces_event,
  context.id="area.name",
  contextual.names = "w_all",
  contextual.weight.matrices=geow.100,
  nb.resamples=5,
  aggregation.functions="weighted.mean",
  design.weight.names="weight",
  sample.seed=1)
```

rename weighted variable name so it reflects the used weighting matrix
```
names(wv.ag.100) <- "w_all.100"
```

Step 3: Perform ResampleMLSpawAggregate
```
acc.w.100 <-
ResampleMLSpawAggregate(
  individual.level.data=traces_ind,
  context.id="area.name",
  formula=cg_acc ~ victim_d + comb_d + male + age_1990 + high_school +
  higher_edu + (1|area.name) + w_all.100,
  aggregates=wv.ag.100,
  precise.data=NULL)
```

Step 4: Perform MLSpawResidMoran for bandwidths 25, 50, 100, 200

Not run:
```
MI.acc <- MLSpawResidMoran(ml.spaw.obj=acc.w.100,
  distance.matrix=d_geo,
  bandwidths=c(25,50,100,200))
```

The results can be used for plotting spatial variogram

Not run:
```
plot(MI.acc[,1], xaxt="n", xlab="Bandwidth values", ylab="Moran's I", type="b")
axis(side=1, at=1:nrow(MI.acc), labels=rownames(MI.acc))
```

ResampleMLSpawAggregate

Spatially weighted multilevel analysis with stratified resampling for aggregated context data
Description

This step-3 function performs multilevel analyses with spatially weighted context data based on aggregate survey estimates. The context data created in step 2 are combined with additional individual outcome and (optional) predictor variables, to test a user-defined model. An ad hoc stratified bootstrap resampling procedure generates robust point estimates for regression coefficients and model fit indicators, and computes confidence intervals adjusted for measurement dependency and measurement error of the aggregate estimates. For each tested model, contextual residuals can be stored for later re-use.

Usage

ResampleMLSpawAggregate(individual.level.data, context.id, formula, aggregates, precise.data = NULL, confidence.intervals = c(0.95), individual.sample.seed = NULL, verbose = TRUE, ...)

Arguments

individual.level.data
A data.frame containing the individual level predictor and outcome variables. The data must be numeric (logical, integer, or plain numeric). There must not be any missing values, NaNs, NULLs or NAs.

context.id
The name of the context ID variable. This variable allows matching contextual units from different data sets (precise.data, individual.level.data). Values can by of any type but need to be defined consistently across data sets.

formula
Formula description of the model. The formula is handed down to 1mer function of the package lme4. Refer to the documentation of 1mer for details.

aggregates
A SpawAggregateOutput-class object generated using SpawAggregate, see examples.

precise.data
A data.frame containing the precise contextual data. There must not be any missing values, NaNs, NULLs or NAs. By default set to NULL.

confidence.intervals
vector of confidence intervals. Defaults to c(.95) which corresponds to 95%.

individual.sample.seed
Seed used to generate the random sampling of the individual data Is one of three things
1. NULL, in which case whatever the current random seed is is used
2. an integer, which will be used to set the random seed. This allows reproducible random samples
3. a saved .Random.seed which allows reproducible random samples as well. The reason why both 2 and 3 are present is because .Random.seed can be saved a posteriori.
ResampleMLSpawAggregate

Defaults to `NULL`.

`verbose` if `TRUE`, progress information and an estimate of the remaining computing time is shown at the screen. Defaults to `TRUE`.

... All additional named arguments are handed through to the function `lme: lmer` (for example, `REML=TRUE`).

Value

An object of class `SpawAggregateOutput-class`.

Author(s)

Till Junge, Sandra Penic, Guy Elcheroth

References

Examples

```r
## Spatially weighted multilevel analysis, with resampled both individual
## level indicators and contextual predictors for aggregation. It may
## include non-resampled precise contextual indicator.
## It is step-3 function
## Predicting collective guilt acceptance.

## Data preparation
## load individual level data, remove collective guilt assignment from the
## data frame, and remove NA's
data(traces_ind)
traces_ind <- traces_ind[,-7]
traces_ind <- na.exclude(traces_ind)

## load contextual indicator for aggregation
data(traces_event)

## load precise contextual indicator
data(homog_census)

## load distance matrix
data(d_geo)

## Step 1: Create spatial weights
geow.100 <- WeightMatrix(d_geo, bandwidth=100)

## Step 2: Create spatially weighted aggregated and precise indicators
```
ResampleMLSpawExact

Spatially weighted multilevel analysis with stratified resampling for exact context data

Description

This step-3 function performs multilevel analyses with spatially weighted context data based on precise macro-level measures. The context data created in step 2 are combined with additional individual outcome and (optional) predictor variables, to test a user-defined model. An ad hoc stratified bootstrap resampling procedure generates robust point estimates for regression coefficients and model fit indicators, and computes confidence intervals adjusted for measurement dependency. For each tested model, contextual residuals can be stored for later re-use.

Usage

```r
ResampleMLSpawExact(individual.level.data, context.id, formula,)
```
precise.data,
confidence.intervals = c(0.95),
nb.resamples = 1000,
individual.sample.seed = NULL,
verbose = TRUE,
...)

Arguments

individual.level.data
A data.frame containing the individual level predictor and outcome variables. The data must be numeric (logical, integer, or plain numeric). There must not be any missing values, NaNs, NULLs or NAs.

context.id
This variable allows matching contextual units from different data sets (precise.data, individual.level.data). Values can by of any type but need to be defined consitently across data sets.

formula
Formula description of the model. The formula is handed down to lmer function of the package lme4. Refer to the documentation of lmer for details.

precise.data
A data.frame containing the precise contextual data. There must not be any missing values, NaNs, NULLs or NAs. By default set to NULL.

confidence.intervals
vector of confidence intervals. Defaults to c(.95) which corresponds to 95%.

nb.resamples
number of resamples to be evaluated. By default set to 1000.

individual.sample.seed
Seed used to generate the random sampling of the individual data Is one of three things

1. NULL, in which case whatever the current random seed is is used
2. an integer, which will be used to set the random seed. This allows reproducible random samples
3. a saved .Random.seed which allows reproducible random samples as well. The reason why both 2 and 3 are present is because .Random.seed can be saved a posteriori.

Defaults to NULL.

verbose
if TRUE, progress information and an estimate of the remaining computing time is shown at the screen. Defaults to TRUE.

... All additional named arguments are handed through to the function lme::lmer (for example, REML=TRUE).

Value

An object of class SpawAggregateOutput-class.

Author(s)

Till Junge, Sandra Penic, Guy Elcheroth
References

Examples

```r
# Spatially weighted multilevel analysis, with resampled individual
# level indicators and precise contextual indicator.

## It is step-2 function

## Data preparation

## load individual level data, remove collective guilt assignment from the
data(traces_ind)
traces_ind <- traces_ind[, -7]  
traces_ind <- na.exclude(traces_ind)

## load precise contextual indicator
data(homog_census)

## load distance matrix
data(d_geo)

## Step 1: Create spatial weights
geow.100 <- WeightMatrix(d_geo, bandwidth=100)

## Step 2: Create spatially weighted precise contextual indicator
homog.100 <- SpawExact(precise.data=homog_census,  
context.id="area.name",  
contextual.names="Homog.00",  
contextual.weight.matrices=geow.100)

## rename weighted variable names so they reflect the used weighting
dataframe
names(homog.100)[2] <- "Homog.100"

## Step 3: Perform ResampleMLSpawExact
acc_homog100 <-  
ResampleMLSpawExact(  
  individual.level.data=traces_ind,  
  context.id="area.name",  
  formula=cg_acc ~ victim_d + comb_d + male + age_1990 + high_school +  
  higher_edu + Homog.100 + (1|area.name),  
  precise.data=homog.100,  
  nb.resamples=10)
```

`resamplemlspawoutput-class`
Class "ResampleMLSpawOutput"
Description

Output object of the function `ResampleMLSpaw`.

Objects from the Class

Objects can be created by calls of the form `new("ResampleMLSpawOutput", ...).

Slots

- `individual.sample.seed`: Object of class "integer"
- `fixed`: Object of class "data.frame"
- `random.var`: Object of class "data.frame"
- `model.fit`: Object of class "data.frame"
- `ranefs`: Object of class "matrix"
- `nb.resamples`: Object of class "integer"
- `betas`: Object of class "data.frame"

Methods

`print` signature `x = "ResampleMLSpawOutput")`
`show` signature `object = "ResampleMLSpawOutput")`

Author(s)

Till Junge

Examples

```r
## Perform ResampleMLSpawExact

## Data preparation (see ResampleMLSpawExact)

data(traces_ind)
traces_ind <- traces_ind[,-7]
traces_ind <- na.exclude(traces_ind)
data(homog_census)
data(d_geo)

## Step 1: Create spatial weights
geow.100 <- WeightMatrix(d_geo, bandwidth=100)

## Step 2: Create spatially weighted precise contextual indicator
homog.100 <- SpawExact(precise.data=homog_census,
context.id="area.name",
contextual.names="Homog_00",
contextual.weight.matrices=geow.100)

## rename weighted variable names so they reflect the used weighting
## matrix
names(homog.100)[2] <- "Homog.100"
```
SpawAggregate

Create and describe spatially weighted survey estimates for contextual indicators

Description

This step-2 function should be used to create spatially weighted context data when contextual indicators are aggregate estimates derived from available micro-level survey data. Aggregation functions can be user-defined or chosen among predefined options, which include indicators of central tendency (e.g., spatially weighted mean), dispersion (e.g., spatially weighted standard deviation) and inter-group variability (e.g., spatially weighted Gini coefficient for group inequality). Point estimates can be adjusted by user-defined design weights. Descriptive confidence intervals are computed by way of an ad hoc bootstrap resampling procedure.

Usage

```r
SpawAggregate(contextual.data, context.id, contextual.names, contextual.weight.matrices=NULL, nb.resamples = 1000, aggregation.functions = "weighted.mean")
```
```r
confidence.intervals = 0.95,
design.weight.names = NULL,
sample.seed = NULL,
additional.args = NULL,
verbose = TRUE)
```

Arguments

- `contextual.data`
 A data.frame consisting of micro-level data to generate contextual indicators by aggregation and containing a column named `context.id` with the context ID variable. This is an individual level dataframe. The data must be numeric (logical, integer, or plain numeric). There must not be any missing values, NaNs, NULLs or NAs.

- `context.id`
 The name of the context ID variable. This variable allows matching contextual units from different data sets (`contextual.data`, `contextual.weight.matrix`). Values can by of any type but need to be defined consistently across data sets.

- `contextual.names`
 A list of names of contextual variables to be aggregated.

- `contextual.weight.matrices`
 A list of weights to be applied to each variable specified in `contextual.names`. A weight may be a weights matrix as, for instance computed by `WeightMatrix`, or NULL, in which case the corresponding contextual variable is not weighted. If only one weight is defined (instead of a list) it is applied to all contextual variables. Defaults to NULL, which means that none of contextual indicators are weighted.

- `nb.resamples`
 A number of resamples to be evaluated. By default set to 1000.

- `aggregation.functions`
 A list of aggregation functions. Functions take either
 1. 1 argument in which case the corresponding individual design weight is NULL,
 2. 2 arguments in which case the second argument is taken from the corresponding individual design weight. Defaults to "mean".

- `confidence.intervals`
 A vector of confidence intervals. Defaults to 0.95 which corresponds to 95%.

- `design.weight.names`
 A list of optional design weights at the individual level used for aggregation (for example, for a weighted mean). List must have same length as `contextual.names`. May contain NULLs for variables which should not be weighted at the individual level. If only one `design.weight` is defined (instead of a list) it is applied to all contextual variables. By default set to NULL.

- `sample.seed`
 Is one of three things
 1. NULL, in which case whatever the current random seed is is used
 2. an integer, which will be used to set the random seed. This allows reproducible random samples
3. A saved \texttt{Random.seed} which allows reproducible random samples as well. The reason why both 2. and 3. are present is because \texttt{Random.seed} can be saved a posteriori. Defaults to NULL.

\texttt{additional.args}

For aggregation functions which take additional arguments (that is in addition to the data to aggregate and design weights), they can be specified here. \texttt{additional.args} defaults to NULL.

\texttt{verbose}

if TRUE, progress information and an estimate of the remaining computing time is shown at the screen. Defaults to TRUE.

Details

\texttt{SpawAggregate} can be used for two similar, yet distinct, purposes:

1. Aggregate contextual data and weight it spatially. For this, make sure to set \texttt{nb.resamples=0}
2. To resample the contextual data repeatedly (bootstrap) and generate a series of aggregated and spatially weighted data frames. For this, make sure to use a large number of resamples.

The function \texttt{SpawAggregate} works exactly the same way in either case, but the output changes. See return value for this.

Value

An object of class \texttt{SpawAggregateOutput-class} if \texttt{nb.resamples} is different than 0, a data frame in the contrary case.

Author(s)

Till Junge, Sandra Penic, Mathieu Cossuta, Guy Elcheroth

Examples

```r
## Creating spatially weighted aggregated contextual indicator - spatially weighted risk of war victimization across TRACES areas.
## This is step-2 function

## Step 1: Load distance matrix and create weights
data(d_geo)
geow.50 <- WeightMatrix(d_geo, bandwidth=50)

## Step 2: Load dataframe with micro-level data for aggregation and create spatially weighted contextual indicator (risk of war victimization weighted by geow.50)
data(traces_event)

wv.g50 <- SpawAggregate(contextual.data=traces_event, context.id="area.name", contextual.names="w_all", contextual.weight.matrices=geow.50,
```

SpawAggregateOutput-class

Class "SpawAggregateOutput"

Description

Output object of the function SpawAggregate.

Objects from the Class

Objects can be created by calls of the form new("SpawAggregateOutput", ...).

Slots

seed: Object of class "ANY" ~~
 contains the random seed which was used in SpawAggregate. Use this seed if you want to
 reproduce the same resamples.

aggregated.samples: Object of class "list" ~~
 A list of matrices of dimension \(n \times m \) where \(n \) is the number of contextual units and \(m \) is
 the number of resamples containing the aggregated context data for each resample.

frames: Object of class "list" ~~
 A list of data.frames. One data.frame per contextual name, each containing the mean
 estimate, standard deviation, median and confidence intervals of the corresponding contextual
 variable by contextual unit.

Methods

merge signature(x = "SpawAggregateOutput", y = "SpawAggregateOutput"): Merges SpawAggregateOutput objects. This is useful if contextual data is being aggregated
 from different individual level data bases.

[signature(x = "SpawAggregateOutput", i = "ANY", j = "ANY", drop = "ANY"): Allows to extract the dataframe corresponding to a bootstrap sample.
getSample signature(object = "SpawAggregateOutput"): Also allows to extract the dataframe corresponding to a bootstrap sample.

length signature(x = "SpawAggregateOutput"): Returns the number of bootstrap samples contained in the object.

names signature(x = "SpawAggregateOutput"): Returns the names of aggregated variables in the object.

names<- signature(x = "SpawAggregateOutput"): Allows to assign names to the aggregates in the object.

names<- signature(x = "SpawAggregateOutput", NA = "ANY"): Allows to change names to the aggregated variables in the object.

show signature(object = "SpawAggregateOutput"): Prints a meaningful short description of the object.

Author(s)

Till Junge, Sandra Penic, Guy Elcheroth

See Also

is generated by SpawAggregate

Examples

```r
## load distance matrix
data(d_geo)
## create a weight matrix
gew.50 <- WeightMatrix(d_geo, bandwidth=50)
## load contextual data
data(traces_event)

## aggregate data
wv.int <- SpawAggregate(contextual.data=traces_event,
context.id="area.name",
contextual.names=c("w_all", "w_all"),
contextual.weight.matrices=list(NULL, gew.50),
aggregation.functions="weighted.mean",
design.weight.names="weight",
 nb.resamples=4)

## check the number of samples
length(wv.int)

## check the second sample
head(wv.int[2])

## change the names of the weighted indicators to more significant ones
names(wv.int) <- c("w_all.0", "w_all.50")

descentsClass("SpawAggregateOutput")
```
SpawExact

Create and describe spatially weighted precise contextual indicators

Description

This step-2 function should be used to create spatially weighted context data when contextual indicators are directly available as precise macro-level measures (e.g., population values based on census or registry data, or precise geographic measures). The generated context data can be adjusted by user-defined population weights.

Usage

```r
SpawExact(precise.data, context.id, contextual.names, contextual.weight.matrices, population.weight.names = NULL)
```

Arguments

- `precise.data`: A data.frame consisting of precise contextual indicators and a context ID variable
- `context.id`: The name of the context ID variable. This variable allows matching contextual units from different data sets (precise.data, contextual.weight.matrix). Values can by of any type but need to be defined consistently across data sets.
- `contextual.names`: A list of column names of contextual variables to be weighted
- `contextual.weight.matrices`: A list of square weight matrices of dimension $n \times n$, where n is the number of contextual units to be applied to the variable specified in `contextual.names`, respectively.
- `population.weight.names`: A list of column names to be used as population weights. By default NULL which means that no population weighting is performed. If only one name is provided, the corresponding column is used as a weight for all contextual names

Value

A data.frame containing the spatially weighted contextual.names.

Author(s)

Till Junge, Sandra Penic, Guy Elcheroth
References

Examples

```r
## Creating spatially weighted precise contextual indicator - spatially weighted
## ethnic homogeneity across TRACES areas.
## This is step 2 function

## Step 1: Load distance matrix and create weights

data(d_geo)
geow.50 <- WeightMatrix(d_geo, bandwidth=50)

## Step 2: Load dataframe with precise contextual indicator and
## create spatially weighted indicator

data(homog_census)

homog.g50 <- SpawExact(precise.data=homog_census,
                        context.id="area.name",
                        contextual.names="Homog_00",
                        contextual.weight.matrices=geow.50)
```

Dataset traces_event

Description

A dataset with micro-level data to generate contextual indicator of risk of war victimization by aggregation. The dataset consists of 243110 cases and three variables. The cases are individuals by three-month time periods.

Usage

`traces_event`

Format

The dataframe contains the following columns:

- *area* - context ID variable, ranges from 1 to 80
- *w_all* - experience of a war event (0 - no, 1 - yes)
- *weight* - design weights
Source

TRACES dataset. Full TRACES datasets can be accessed through the Data and Research Information Services from the Swiss Foundation for Research in the Social Sciences (www.unil.ch/daris).

References

Examples

data(traces_event)

traces_ind
Dataset traces_ind

Description

Individual level data set, with individual level predictor and outcome variables. The traces_ind dataframe includes responses of 2254 respondents on 12 variables.

Usage

traces_ind

Format

This dataframe contains the following columns:

- **area** - context ID variable, ranges from 1 to 80
- **label** - labels of areas
- **entity** - political entities of former Yugoslavia in 2006 (1 - Slovenia, 2 - Croatia, 3 - Bosnia, 4 - Serbia, 5 - Vojvodina, 6 - Montenegro, 7 - Kosovo, 8 - Macedonia)
- **victim_d** - personal experience of war victimization (0-no, 1-yes)
- **comb_d** - participation in combats (0-no, 1-yes)
- **male** - gender (0-woman, 1-man)
- **cg_acc** - composite results on 5 items of the Collective guilt acceptance scale, ranges from 1 to 7
- **cg_ass** - composite results on 5 items of the Collective guilt assignment scale, ranges from 1 to 7
- **age_1990** - age of respondents, in years
- **elem_school** - elementary school as a highest level of education (0-no, 1-yes)
- **high_school** - high school as a highest level of education (0-no, 1-yes)
- **higher_edu** - achieved higher level education (0-no, 1-yes)
WeightMatrix

Source

TRACES. Full TRACES datasets can be accessed through the Data and Research Information Services from the Swiss Foundation for Research in the Social Sciences (www.unil.ch/daris).

References

Examples

data(traces_ind)

WeightMatrix Create spatial weighting matrices

Description

This step-1 function creates a matrix of spatial weights on the basis of a user-defined distance matrix, Kernel function, and bandwidth value. The distance matrix needs to specify a value for each of the possible \(n \times n \) binomials that correspond to \(n \) contextual units. It can be either symmetric or asymmetric. In principle, its diagonal, corresponding to the distance of each unit with itself, should be composed of zero values. A Kernel function proposed by default generates spatial weights that tend toward 1 for distances substantially lower than the bandwidth value, toward 0 for distances substantially higher than the bandwidth value and toward 0.5 for distances approaching the bandwidth value.

Usage

WeightMatrix(distance.matrix, bandwidth, kernel = NULL,
moran = FALSE)

Arguments

distance.matrix
- square matrix of dimension \(n \times n \), where \(n \) is the number of contextual units.

bandwidth
- scalar numeric value specifying the bandwidth \(h \)

kernel
- function applied to the distance matrix. By default NULL, in which case the kernel function

\[
 w_{ij} = f(d, h) = \left(\frac{1}{2} \right)^{d_{ij}^2/h^2}
\]

is used, where \(w_{ij}, d_{ij}, h \) are elements of the weight matrix \(W \), of the distance matrix \(D \) and the bandwidth \(h \). User-supplied kernel functions have to take 2 arguments and return a matrix of the same dimension as the first argument.

moran
- a logical value specifying whether the proximity weights matrix should have zeros in the diagonal. By default set to FALSE.
Value

A weights matrix of the same dimension as `distance.matrix`.

Author(s)

Till Junge, Sandra Penic, Guy Elcheroth

References

Examples

```r
# creating geographical proximity weight, with bandwidth h=50
data(d_geo)
geow_50 <- WeightMatrix(distance.matrix=d_geo, bandwidth=50)
```
Index

*Topic classes
 MLSpawExactOutput-class, 16
 ResampleMLSpawOutput-class, 25
 SpawAggregateOutput-class, 30

*Topic datasets
 CH1903, 8
 GPS, 13

*Topic spacom
 WeightMatrix, 35

*Topic spatial
 aggregation functions, 5
 CH1903, 8
 ExploreMLSpawExact, 10
 MLSpawExact, 14
 MLSpawExactOutput-class, 16
 ResampleMLSpawAggregate, 20
 ResampleMLSpawExact, 23
 ResampleMLSpawOutput-class, 25
 SpawAggregate, 27
 SpawAggregateOutput-class, 30
 SpawExact, 32
 WeightMatrix, 35

[,SpawAggregateOutput, ANY, ANY, ANY-method
 (SpawAggregateOutput-class), 30

aggregation functions, 5
AIC,MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16

BIC,MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16

CH1903, 8

d_ethnic, 8
d_geo, 9
d_ident, 9
d_migr, 10

ExploreMLSpawAggregate, 5

ExploreMLSpawAggregate
 (ExploreMLSpawExact), 10
ExploreMLSpawExact, 3, 10

fixef,MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16

getSample,SpawAggregateOutput-method
 (SpawAggregateOutput-class), 30
GPS, 13

homog_census, 14

length,SpawAggregateOutput-method
 (SpawAggregateOutput-class), 30

merge,SpawAggregateOutput,SpawAggregateOutput-method
 (SpawAggregateOutput-class), 30

merMod, 17
MLSpawExact, 3, 14
MLSpawExactOutput-class, 16
MLSpawResidMoran, 3, 18
	names,SpawAggregateOutput-method
 (SpawAggregateOutput-class), 30

names<-.SpawAggregateOutput,ANY-method
 (SpawAggregateOutput-class), 30

names<-.SpawAggregateOutput-method
 (SpawAggregateOutput-class), 30

print,MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16
print,ResampleMLSpawOutput-method
 (ResampleMLSpawOutput-class), 25

ranef,MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16
ResampleMLSpawAggregate, 3, 20
ResampleMLSpawExact, 3, 23
ResampleMLSpawOutput-class, 25
show, MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16
show, ResampleMLSpawOutput-method
 (ResampleMLSpawOutput-class),
25
show, SpawAggregateOutput-method
 (SpawAggregateOutput-class), 30
spacom (spacom-package), 2
spacom-package, 2
SpawAggregate, 3, 5, 27, 27, 31
SpawAggregateOutput-class, 30
SpawExact, 3, 32
summary, MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16

traces_event, 33
traces_ind, 34

VarCorr, MLSpawExactOutput-method
 (MLSpawExactOutput-class), 16

WeightMatrix, 3, 28, 35
wt.Atkinson (aggregation functions), 5
wt.gini (aggregation functions), 5
wt.mean (aggregation functions), 5
wt.RS (aggregation functions), 5
wt.sd (aggregation functions), 5
wt.Theil (aggregation functions), 5
wt.var (aggregation functions), 5