Package ‘streamMOA’

March 21, 2019

Version 1.2-1
Date 2019-03-20
Title Interface for MOA Stream Clustering Algorithms
Description Interface for data stream clustering algorithms implemented in the MOA (Massive On-
line Analysis) framework (Albert Bifet, Geoff Holmes, Richard Kirkby, Bern-
search 11: 1601-1604).
Depends stream (>= 1.1-2), rJava (>= 0.9-0)
Imports graphics, stats, methods
SystemRequirements Java (>= 8)
BugReports https://github.com/mhahsler/streamMOA
License GPL-3
Copyright MOA code in inst/java/moa.jar is Copyright (C) The University of Waikato and distributed under the Apache License, version 2.0. All other code is Copyright (C) Matthew Bolanos, John Forrest and Michael Hahsler
NeedsCompilation no
Author Michael Hahsler [aut, cre, cph], John Forrest [aut, cph], Matthew Bolanos [ctb], Matthias Carnein [ctb]
Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>
Repository CRAN
Date/Publication 2019-03-20 23:30:02 UTC

R topics documented:

DSC_BICO_MOA ... 2
DSC_CluStream_MOA ... 3
DSC_ClusTree_MOA ... 4
DSC_DenStream_MOA ... 6
DSC_BICO_MOA

Description

This is an interface to the MOA implementation of BICO. The original BICO implementation by Fichtenberger et al is also available as DSC_BICO.

Usage

DSC_BICO_MOA(Cluster = 5, Dimensions, MaxClusterFeatures = 1000, Projections = 10, k = NULL, space = NULL, p = NULL)

Arguments

Cluster, k Number of desired centers
Dimensions The number of the dimensions of the input points (stream) need to be specified in advance
MaxClusterFeatures, space Maximum size of the coreset
Projections, p Number of random projections used for the nearest neighbour search

Details

BICO maintains a tree which is inspired by the clustering tree of BIRCH, a SIGMOD Test of Time award-winning clustering algorithm. Each node in the tree represents a subset of these points. Instead of storing all points as individual objects, only the number of points, the sum and the squared sum of the subset’s points are stored as key features of each subset. Points are inserted into exactly one node.

Author(s)

Matthias Carnein

References

Examples

```r
# data with 3 clusters and 2 dimensions
stream <- DSD_Gaussians(k=3, d=2)

# cluster with BICO
bico <- DSC_BICO_MOA(Cluster=3, Dimensions=2)
update(bico, stream, 10000)
bico

# plot micro and macro-clusters
plot(bico, stream, type="both")
```

Description

Class implements the CluStream cluster algorithm for data streams.

Usage

```r
DSC_CluStream(m = 100, horizon = 1000, t = 2, k = NULL)
DSC_CluStream_MOA(m = 100, horizon = 1000, t = 2, k = NULL)
```

Arguments

- `m` Defines the maximum number of micro-clusters used in CluStream
- `horizon` Defines the time window to be used in CluStream
- `t` Maximal boundary factor (=Kernel radius factor). When deciding to add a new data point to a micro-cluster, the maximum boundary is defined as a factor of `t` of the RMS deviation of the data points in the micro-cluster from the centroid.
- `k` Number of macro-clusters to produce using weighted k-means. NULL disables automatic reclustering.

Details

This is an interface to the MOA implementation of CluStream.

If `k` is specified, then CluStream applies a weighted k-means algorithm for reclustering (see Examples section below).

Value

An object of class `DSC_CluStream` (subclass of `DSC_Micro, DSC_MOA and DSC`), or, if `k` is not NULL then an object of `DSC_TwoStage`.
Author(s)

Michael Hahsler and John Forrest

References

See Also

DSC, DSC_Micro, DSC_MOA

Examples

```r
# data with 3 clusters and 5% noise
stream <- DSD_Gaussians(k=3, d=2, noise=.05)

# cluster with CluStream
clustream <- DSC_ClusStream(m=50)
update(clustream, stream, 500)
clustream

# plot micro-clusters
plot(clustream, stream)

# plot assignment area (micro-cluster radius)
plot(clustream, stream, assignment=TRUE, weights=FALSE)

# reclustering. Use weighted k-means for CluStream
kmeans <- DSC_Kmeans(k=3, weighted=TRUE)
recluster(kmeans, clustream)
plot(kmeans, stream, type="both")

# use k-means reclustering automatically by specifying k
clustream <- DSC_ClusStream(m=50, k=3)
update(clustream, stream, 500)
clustream

plot(clustream, stream, type="both")
```

DSC_ClusTree_MOA
ClusTree Data Stream Clusterer

Description

Interface for the MOA implementation of the ClusTree data stream clustering algorithm.
Usage

DSC_ClusTree(horizon = 1000, maxHeight = 8, lambda = NULL, k = NULL)
DSC_ClusTree_MOA(horizon = 1000, maxHeight = 8, lambda = NULL, k = NULL)

Arguments

horizon Range of the (time) window.
maxHeight The maximum height of the tree.
lambda number used to override computed lambda (decay).
k If specified, k-means with k clusters is used for reclustering.

Details

ClusTree uses a compact and self-adaptive index structure for maintaining stream summaries.

Value

An object of class DSC_ClusTree (subclass of DSC, DSC_MOA, DSC_Micro).

Author(s)

Michael Hahsler and John Forrest

References

See Also

DSC, DSC_Micro, DSC_MOA

Examples

data with 3 clusters and 5% noise
stream <- DSD_Gaussians(k=3, d=2, noise=0.05)

Use automatically the k-means reclusterer with k=3 to create macro clusters
clustree <- DSC_ClusTree(maxHeight=3, k = 3)
update(clustree, stream, 500)
clustree

plot micro-clusters
plot(clustree, stream, , type = "both")
DSC_DenStream_MOA

DenStream Data Stream Clusterer

Description

Interface for the DenStream cluster algorithm for data streams implemented in MOA.

Usage

DSC_DenStream(epsilon, mu = 1, beta = 0.2, lambda = 0.001,
 initPoints = 100, offline = 2, processingSpeed=1, recluster = TRUE, k=NULL)
DSC_DenStream_MOA(epsilon, mu = 1, beta = 0.2, lambda = 0.001,
 initPoints = 100, offline = 2, processingSpeed=1, recluster = TRUE, k=NULL)

Arguments

epsilon
 defines the epsilon neighbourhood which is the maximal radius of micro-clusters (r<=epsilon). Range: 0 to 1.

mu
 minpoints as the weight w a core-micro-clusters needs to be created (w>=mu). Range: 0 to max(int).

beta
 multiplier for mu to detect outlier micro-clusters given their weight w (w<beta x mu). Range: 0 to 1

lambda
 decay constant.

initPoints
 number of points to use for initialization via DBSCAN.

offline
 offline multiplier for epsilon. Range: between 2 and 20). Used for reachability reclustering

processingSpeed
 Number of incoming points per time unit (important for decay). Range: between 1 and 1000.

recluster
 logical; should the offline DBSCAN-based (i.e., reachability at a distance of epsilon) be performed?

k
 integer; tries to automatically chooses offline to find k macro-clusters.
DenStream applies reachability (from DBSCAN) between micro-clusters for reclustering using epsilon x offline (defaults to 2) as the reachability threshold.

If k is specified it automatically chooses the reachability threshold to find k clusters. This is achieved using single-link hierarchical clustering.

Value
An object of class DSC_DenStream (subclass of DSC, DSC_MOA, DSC_Micro) or, for recluster=TRUE, an object of class DSC_TwoStage.

Author(s)
Michael Hahsler and John Forrest

References

See Also
DSC, DSC_Micro, DSC_MOA

Examples

data with 3 clusters and 5% noise
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

use Den-Stream with reachability reclustering
denstream <- DSC_DenStream(epsilon = .05)
update(denstream, stream, 500)
denstream

plot macro-clusters
plot(denstream, stream)

plot micro-cluster
plot(denstream, stream, type = "micro")

show micro and macro-clusters
plot(denstream, stream, type = "both")

reclustering. Choose reclustering reachability threshold automatically to find 3 clusters
denstream2 <- DSC_DenStream(epsilon = .05, k = 3)
update(denstream2, stream, 500)
plot(denstream2, stream, type = "both")

DSC_DStream_MOA

D-Stream Data Stream Clustering Algorithm

Description

This is an interface to the MOA implementation of D-Stream. A C++ implementation (including reclustering with attraction) is available as DSC_DStream.

Usage

DSC_DStream_MOA(decayFactor = 0.998, Cm = 3, C1 = 0.8, Beta = 0.3)

Arguments

- **decayFactor** The decay factor
- **Cm** Controls the threshold for dense grids
- **C1** Controls the threshold for sparse grids
- **Beta** Adjusts the window of protection for renaming previously deleted grids as sporadic

Details

D-Stream creates an equally spaced grid and estimates the density in each grid cell using the count of points falling in the cells. Grid cells are classified based on density into dense, transitional and sporadic cells. The density is faded after every new point by a decay factor.

Note: The MOA implementation of D-Stream currently does not return micro clusters.

Author(s)

Matthias Carnein

References

Li Tu and Yixin Chen. 2009. Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 3(3), Article 12 (July 2009), 27 pages.
DSC_MOA

Examples

```r
# data with 2 clusters in 2 dimensions
stream = DSD_Gaussians(2,2, mu = rbind(c(-10,-10), c(10,10)))

# cluster with D-Stream
dstream <- DSC_DStream_MOA(decayFactor=0.998)
update(dstream, stream, 10000)
dstream

# plot macro-clusters
plot(dstream, stream, type= "macro")
```

DSC_MOA

DSC_MOA Class

Description

An abstract class that inherits from the base class DSC and provides the common functions needed to interface MOA clusterers.

Details

DSC_MOA classes operate in a different way in that the centers of the micro-clusters have to be extracted from the underlying Java object. This is done by using rJava to perform method calls directly in the JRI and converting the multi-dimensional Java array into a local R data type.

Author(s)

Michael Hahsler and John Forrest

References

See Also

DSC
DSC_StreamKM_MOA

streamKM++

Description

This is an interface to the MOA implementation of streamKM++.

Usage

DSC_StreamKM(sizeCoreset = 10000, numClusters = 5, length = 100000L)
DSC_StreamKM_MOA(sizeCoreset = 10000, numClusters = 5, length = 100000L)

Arguments

- **sizeCoreset**
 Size of the coreset
- **numClusters**
 Number of clusters to compute
- **length**
 Length of the data stream

Details

streamKM++ uses a tree-based sampling strategy to obtain a small weighted sample of the stream called coreset. Upon reclustering, the algorithm applies the k-means++ algorithm to find a given number of centres in the coreset.

Note: This implementation currently does not return micro-clusters.

Author(s)

Matthias Carnein

References

Examples

```r
# data with 3 clusters
stream <- DSD_Gaussians(k=3, d=2)

# cluster with streamKM++
streamkm <- DSC_StreamKM(sizeCoreset=10000, numClusters=3, length=100000)
update(streamkm, stream, 100000)
streamkm

# plot macro-clusters
plot(streamkm, stream, type="macro")
```
DSD_RandomRBFGeneratorEvents

Random RBF Generator Events Data Stream Generator

Description

A class that generates random data based on RandomRBFGeneratorEvents implemented in MOA.

Usage

DSD_RandomRBFGeneratorEvents(\(k = 3, d = 2, \text{numClusterRange} = 3L, \)
\(\text{kernelRadius} = 0.07, \text{kernelRadiusRange} = 0, \text{densityRange} = 0, \)
\(\text{speed} = 100L, \text{speedRange} = 0L, \text{noiseLevel} = 0.1, \)
\(\text{noiseInCluster} = \text{FALSE}, \text{eventFrequency} = 30000L, \)
\(\text{eventMergeSplitOption} = \text{FALSE}, \text{eventDeleteCreate} = \text{FALSE}, \)
\(\text{modelSeed} = \text{NULL}, \text{instanceSeed} = \text{NULL})\)

Arguments

\(k\) The average number of centroids in the model.
\(d\) The dimensionality of the data.
\(\text{numClusterRange}\) Range for number of clusters.
\(\text{kernelRadius}\) The average radius of the micro-clusters.
\(\text{kernelRadiusRange}\) Deviation of the number of centroids in the model.
\(\text{densityRange}\) Density range.
\(\text{speed}\) Kernels move a predefined distance of 0.01 every X points.
\(\text{speedRange}\) Speed/Velocity point offset.
\(\text{noiseLevel}\) Noise level.
\(\text{noiseInCluster}\) Allow noise to be placed within a cluster.
\(\text{eventFrequency}\) Frequency of events.
\(\text{eventMergeSplitOption}\) Merge and split?
\(\text{eventDeleteCreate}\) Delete and create?
\(\text{modelSeed}\) Random seed for the model.
\(\text{instanceSeed}\) Random seed for the instances.
Details

There are an assortment of parameters available for the underlying MOA data structure, however, we have currently limited the available parameters to the arguments above. Currently the modelSeed and instanceSeed are set to default values every time a DSD is created, therefore the generated data will be the same. Because of this, it is important to set the seed manually when different data is needed.

The default behavior is to create a data stream with 3 clusters and concept drift. The locations of the clusters will change slightly, and they will merge with one another as time progresses.

Value

An object of class DSD_RandomRBFGeneratorEvent (subclass of DSD_MOA, DSD).

Author(s)

Michael Hahsler and John Forrest

References

See Also

DSD

Examples

stream <- DSD_RandomRBFGeneratorEvents()
get_points(stream, 10, class=TRUE)

Not run:
animate_data(stream, n=5000, pointInterval=100, xlim=c(0,1), ylim=c(0,1))

End(Not run)
Index

CluStream (DSC_CluStream_MOA), 3
clustream (DSC_CluStream_MOA), 3
ClusTree (DSC_ClusTree_MOA), 4
clustree (DSC_ClusTree_MOA), 4

DenStream (DSC_DenStream_MOA), 6
denstream (DSC_DenStream_MOA), 6
DSC, 4, 5, 7, 9
DSC_BICO, 2
DSC_BICO_MOA, 2
DSC_CluStream (DSC_CluStream_MOA), 3
DSC_CluStream_MOA, 3
DSC_ClusTree (DSC_ClusTree_MOA), 4
DSC_ClusTree_MOA, 4
DSC_DenStream (DSC_DenStream_MOA), 6
DSC_DenStream_MOA, 6
DSC_DStream, 8
DSC_DStream_MOA, 8
DSC_Micro, 4, 5, 7
DSC_MOA, 4, 5, 7, 9
DSC_StreamKM (DSC_StreamKM_MOA), 10
DSC_StreamKM_MOA, 10
DSD, 12
DSD_RandomRBFGeneratorEvents, 11