Package ‘survJamda’

November 5, 2015

Type Package
Title Survival Prediction by Joint Analysis of Microarray Gene Expression Data
Version 1.1.4
Date 2015-11-01
Author Haleh Yasrebi
Maintainer Haleh Yasrebi<hyasrebi@yahoo.com>
Description Microarray gene expression data can be analyzed individually or jointly using merging methods or meta-analysis to predict patients’ survival and risk assessment.
Depends survival, survivalROC, ecosist, survcomp, survJamda.data
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-11-05 20:33:44

R topics documented:
survJamda-package .. 3
aprior ... 4
Beta.NA ... 5
bprior ... 6
build.design ... 7
cal.cox.coef ... 7
calPerformance.auc.plot .. 8
calPerformance.merge.indep 9
calPerformance.meta ... 10
calPerformance.single.indep 11
ci.gm ... 13
comb.surv.censor .. 14
ComBat ... 14
combat.likelihood .. 16
compute.combat ... 17
cross.val.combat .. 17
cross.val.surv .. 19
design.mat ... 20
det.batchID .. 21
det.set.ind .. 21
det.set.meta .. 22
detFileName ... 23
eval.merge.simulate .. 23
eval.subset .. 24
excl.missing ... 25
excl.missing.single.indep 26
excl.samples .. 27
featureselection .. 27
featureselection.meta 28
filter.absent .. 29
generate.survival.data 30
gm ... 31
groups.cv .. 32
init.plot .. 32
int.eprior .. 33
inv.normal .. 34
it.sol .. 35
iter.crossval .. 36
iter.crossval.combat 38
iter.subset ... 40
L ... 42
list.batch .. 43
main.merge.indep.valid 44
main.process .. 46
main.single.indep.valid 47
meta.main ... 49
plot.roc.curves ... 50
plot.time.dep ... 51
plotROC ... 52
pool.zscores .. 53
postmean .. 53
postvar .. 54
pred.time.indep.valid 55
prepcombat ... 56
prepcombat.single.indep 57
prepzscore .. 58
prepzscore1 ... 59
prepzscore2 ... 60
proc.simulate ... 61
shuffle.samples ... 62
splitMerged.auc.plot 63
splitMerged.indep .. 64
Description

Prediction of survival and risk assessment of patients using joint analysis of microarray gene expression data.

Details

Package: survJamda
Type: Package
Version: 1.1.4
Date: 2015-11-01
Depends: survival, survivalROC, ecodist, survcomp, survJamda.data
License: GPL (>= 2)
LazyLoad: yes

Author(s)

Haleh Yasrebi
Maintainer: Haleh Yasrebi <hyasrebi@yahoo.com>

References

See Also

coxph, survivalROC, corgen, p.adjust, concordance.index, sbrier.score2proba

aprior

Calculate empirical hyper-prior values

Description

Calculate empirical hyper-prior values

Usage

aprior(gamma.hat)

Arguments

gamma.hat Estimate of additive batch effect.

Value

Empirical hyper-prior values of Bayesian model.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

See Also

ComBat, bprior
Fit the L/S model in the presence of missing data values

Description

Fit the L/S model in the presence of missing data values

Usage

Beta.NA(y, X)

Arguments

y Product of design matrix and matrix of gene expression data.
x Matrix of gene expression data.

Value

Vector of Regression coefficients in L/S model fitting.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

See Also

ComBat
Description

Calculate empirical hyper-prior values of Bayesian model

Usage

bprior(gamma.hat)

Arguments

gamma.hat Estimate of additive batch effect

Value

Empirical hyper-prior values of Bayesian model.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

See Also

ComBat, aprior
build.design

Initiation to build the design matrix

Description

Initiation to build the design matrix.

Usage

build.design(vec, des = NULL, start = 2)

Arguments

- **vec**
 - Vector of batches in the sample info matrix.
- **des**
 - Initial value of design matrix
- **start**
 - Starting index of design matrix.

Value

Design matrix

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

cal.cox.coef

Cox coefficient calculation.

Description

Calculate the Cox coefficients of covariates.

Usage

cal.cox.coef (gnExpMat, survivaltime, censor)
Arguments

gnExpMat
Matrix of gene expression data.
survivaltime
Vector of survival time.
censor
Vector of censoring status. 1 = event occurred, 0 = censored.

Value

Vector of Cox coefficients.

Author(s)

Haleh Yasrebi

References

calperformanceNaucNplot
Assess the performance obtained from the merged data set by independent validation

Description

Identify a gene signature and reduce the gene set in the training and testing sets accordingly.

Arguments

lst
List of two objects, the gene expression data matrix and a list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
train.ind
Training set index.
test.ind
Testing set index.
file.name
The name of the expression file used as the testing set.
col
Color of ROC curve.
method
A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the p.adjust function.
normalization
The normalization method, Z-score2, Z-score1 or ComBat.
time.dep
An integer 0 or 1, 1 to plot time-dependent ROC curves for different time points and 0 for no plot.
Details
In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value
None.

Warning
This function is not called by the user directly.

Author(s)
Haleh Yasrebi

Description
Identify a gene signature from the merged data set and reduce of the gene set in the training and testing sets accordingly. The performance of the gene signature is performed by independent validation.

Arguments

- **lst**: List of two objects, the gene expression data matrix and a list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- **train.ind**: Index of training set.
- **test.ind**: Index of testing set.
- **method**: A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the p.adjust function.
- **gn.nb**: Number of genes to select for gene signature when method="none".
- **perf.eval**: A string taking one the values, "auc", "cindex", "bsc".
- **normalization**: A character string specifying the normalization method, "zscore1", "zscore2" or "combat".
Details

In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

If perf.eval == "auc", time-dependent AUC and hazard ratio are used as the measure of performance, perf.eval == "cindex", concordance index defined in the survcomp package or perf.eval == "bsc", brier score defined in the survcomp package is used.

Value

AUC, HR(CI) and p-value.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

References

Description

Analyze jointly the data set by the inverse normal method (Hedges and Olkin, 1985).

Usage

```r
calPerformance.meta(common.gene, zstat, i, j, geno.files, surv.data, method)
```

Arguments

- `common.gene`: A vector of character strings containing the names of the genes common to all data sets.
- `zstat`: A list containing the combined Z-scores of the data sets composing the training set.
calPerformance.single.indep

Description

Assess the performance of the gene signatures on single data sets in pair-wise manner.

Usage

```
calPerformance.single.indep(lst1, lst2, method, gn.nb, perf.eval)
```
Arguments

lst1 A list of two objects, (i) the gene expression data and (ii) the list of survival time and censoring status of the data set used as the training set. In the censoring status vector, 1 = event occurred, 0 = censored.

lst2 A list of two objects, (i) the gene expression data and (ii) the list of survival time and censoring status of an independent data set used as the testing set. In the censoring status vector, 1 = event occurred, 0 = censored.

method A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the p.adjust function.

gn.nb Number of genes to select for gene signature when method="none".

perf.eval A string taking one the values, "auc", "cindex", "bsc".

Details

In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-gn.nb ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

If perf.eval == "auc", time-dependent AUC and hazard ratio are used as the measure of performance, perf.eval == "cindex", concordance index defined in the survcomp package or perf.eval == "bsc", brier score defined in the survcomp package is used.

Value

AUC, HR(CI) and p-value.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

References

Description

Calculate the Confidence Interval (CI) of a geometric mean.

Usage

\texttt{ci.gm(x)}

Arguments

\texttt{x} Vector of numeric values. For example, a vector of HRs.

Value

Vector of the CI of a geometric mean.

Author(s)

Haleh Yasrebi

See Also

\texttt{gm}

Examples

\texttt{v = c(1.5,2.5,7,4)}
\texttt{ci.gm(v)}

```r
## The function is currently defined as
function(x){
gml = mean(log(x), na.rm = T)
cil = exp(gml-1.96*(sd(log(x), na.rm = T)/sqrt(length(x)))))
ciupp = exp(gml+1.96*(sd(log(x), na.rm = T)/sqrt(length(x)))))
vec = c(round(cil,2), round(ciupp,2))
return (vec)
}
```
comb.surv.censor Merge survival times and censoring status.

Description
Merge vectors of survival time and censoring status of different data sets for joint analysis.

Usage
comb.surv.censor(geno.files,index,surv.data)

Arguments
- geno.files: Vector of character strings containing the names of expression files.
- index: Index of the data files in geno.files to be combined.
- surv.data: List of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

Value
A list of two vectors, combined survival time and censoring status.

Warning
This function is not called by the user directly.

Author(s)
Haleh Yasrebi

ComBat ComBat-adjusted microarray gene expression data

Description
Compute ComBat-adjusted microarray gene expression data.

Usage
ComBat(expression.xls, sample_info_file, type = "txt", write = TRUE, covariates = "all", par.prior = TRUE, filter = FALSE, skip = TRUE, prior.plots = TRUE)
Arguments

- `expression_xls` A character string specifying gene expression file.
- `sample_info_file` A character string specifying sample file.
- `type` A character string specifying the type of the file, "txt" or "csv".
- `write` A Boolean variable indicating whether the output (adjusted data) should be written into a file.
- `covariates` A vector of integers or "all" if all covariates should be used. `covariates=all` will use all of the columns in your sample info file in the modeling (except array/sample name), if you only want use a some of the columns in your sample info file, specify these columns here as a vector (you must include the Batch column in this list).
- `par.prior` A Boolean character indicating whether the parametric adjustment should be applied.
- `filter` A Boolean variable indicating whether presence/absence call is used in the gene expression file.
- `skip` An integer value indicating the number of columns that contain the gene names. `skip = 1` implies the first expression values start from column 2.
- `prior.plot` A Boolean variable indicating whether the prior plots should be given where black is a kernel density estimate of the batch effects. Quantile-quantile plots are also included. If the red and black lines do not match up well, use the nonparametric adjustment.

Value

Matrix of adjusted expression data.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

combat.likelihood

Likelihood function.

Description

Likelihood function.

Usage

combat.likelihood(x, g.hat, d.hat)

Arguments

x Matrix of gene expression data.
g.hat Estimated additive batch effect.
d.hat Estimated multiplicative batch effect.

Value

Likelihood estimate.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

See Also

ComBat
compute.combat

Initiate ComBat adjustment

Description

Call ComBat function for ComBat-adjustment of microarray gene expression data.

Usage

compute.combat(fileGeno, fileSample)

Arguments

fileGeno: A character string specifying the name of the gene expression file. Genes are in columns and samples are in rows. Column names should contain the gene names.

fileSample: A character string specifying the name of the file containing the sample or array names of gene expression data and batch ID.

Value

ComBat-adjusted gene expression data matrix. Genes are organized in rows and samples are organized in columns.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

cross.val.combat

Cross validation with ComBat adjustment

Description

Assess the performance of the gene signatures derived from the merged data set adjusted by ComBat in cross-validation.

Usage

cross.val.combat(x, y, censor, batchID, method, gn.nb, plot.roc, ngroup, iter)
Arguments

- **x**: Matrix of gene expression data.
- **y**: Vector of survival time.
- **censor**: Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- **batchID**: Vector containing the batch ID of the data set x. The batch ID of the data sets composing the matrix x should be in the same order of the component data sets. For a given data set, the batch id can be an integer or the name of the data set. The batch id must be the same for all samples or arrays of a data set.
- **method**: A character string specifying the feature selection method: "none" for top-ranking (top-100 ranking by default) or one of the adjusting methods specified by the p.adjust function.
- **gn.nb**: An integer variable specifying the number of genes to select. The default is 100.
- **plot.roc**: An integer specifying whether the ROC curves should be plotted or not (1 or 0).
- **ngroup**: An integer variable specifying the number of cross-validation folds. The default is 10.
- **iter**: An integer variable specifying the current number of iteration.

Details

If the user wants to apply his own feature selection method, he should define his function with the same number of parameters as the defined feature selection function of the package, i.e. `featureselection`. The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if `method` != "none".

ROC curves are the plots of the mean of true positives (sensitivity) and the mean of false positives (1-specificity) over `ngroup` folds of cross-validation.

Value

Arithmetic mean of AUC +/- standard deviation and geometric mean of HR(CI) generated from cross-validation.

Author(s)

Haleh Yasrebi

References

See Also

`iter.crossval.combat`
Description

Assess the performance of the gene signatures derived from a single or merged data set by cross-validation.

Usage

cross.val.surv(x, y, censor, ngroup, iter, method, zscore, gn.nb, gn.nb.display, plot.roc)

Arguments

- **x**: Matrix of gene expression data.
- **y**: Vector of survival time.
- **censor**: Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- **ngroup**: An integer specifying the number of cross-validation folds. The default is 10.
- **iter**: An integer specifying the current number of iteration.
- **method**: A character string specifying the feature selection method: "none" for top-ranking (top-100 ranking by default) or one of the adjusting methods specified by the p.adjust function.
- **zscore**: An integer specifying whether Z-score normalization should be applied or not (1 or 0). 1 if the data is a merged data set and 0 if data is a single data set.
- **gn.nb**: An integer specifying the number of genes to select. The default is 100.
- **gn.nb.display**: An integer specifying the number of selected genes to display.
- **plot.roc**: An integer specifying whether the ROC curves should be plotted or not (1 or 0).

Details

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

If the user wants to apply his own feature selection method, he should define his function with the same number of parameters as the defined feature selection function of the package, i.e. featureselection.

ROC curves are the plots of the mean of true positives (sensitivity) and the mean of false positives (1-specificity) over ngroup folds of cross-validation.

Value

AUC and HR generated from cross-validation.
Author(s)
Haleh Yasrebi

References

design.mat Build a design matrix

Description
Build a design matrix for ComBat adjustment.

Usage
design.mat(saminfo)

Arguments
saminfo Matrix of sample information.

Value
Design matrix.

Warning
This function is not called by the user directly.

Author(s)
WE Johnson

References
det.batchID

Determine the batch ID of data sets.

Description

Determine the batch ID of data sets for ComBat.

Usage

```r
det.batchID(geno.files)
```

Arguments

- `geno.files` A vector of character containing the names of gene expression data files.

Value

A vector of integers specifying the batch ID of data sets. The integers from 1 to the number specifying the length of `geno.files` are set as the batch ID of the data sets named in `geno.files` as follows: 1 to the first expression file name in `geno.files`, 2 to the second expression file name in `geno.files`, ..., and the integer specifying the length of `geno.files` to the last expression file in `geno.files`, respectively.

Author(s)

Haleh Yasrebi

det.set.ind

Determine the indices of the training or testing set.

Description

Determine the indices of the training or testing set.

Usage

```r
det.set.ind(geno.files, train, i)
```

Arguments

- `geno.files` A vector of character containing the names of gene expression data files.
- `train` Integer variable specifying whether the returned indices are for the training set or testing set (1 or 0).
- `i` Integer variable specifying the indices of the file in `geno.files`.

Value
A vector containing the indices of the required set.

Author(s)
Haleh Yasrebi

det.set.meta

Split data for meta analysis.

Description
Split data into the training and testing sets for meta analysis.

Usage
det.set.meta(i, j, geno.files, surv.data, method)

Arguments
i
A vector of character strings consisting of the names of the expression files used for the training set.

j
A character string specifying the name of the expression file used for the testing set.

geno.files
A vector of character strings consisting of the names of the expression files.

surv.data
A list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

method
A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the p.adjust function

Details
In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value
None.

Author(s)
Haleh Yasrebi
detFileName

Determine the name of a file.

Description

Determine the name of a file.

Usage

`detFileName(file.name)`

Arguments

- **file.name**: A character string specifying the name of the expression file to display.

Value

`file.name` in upper case (in the case of a "gse" file) or without any change.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

eval.merge.simulate

Performance evaluation by merging two simulated independent data sets

Description

Simulate two data sets, merge them and evaluate the performance of the gene signature derived from the merged data set in 10 iterations of 10-fold cross-validation. The data sets are combined into one set, split into the training and testing sets which are then normalized by Z-score normalization.

Usage

`eval.merge.simulate(d1, d2, tot.genes, gene.nb, zscore)`
Arguments

\(d1 \) Matrix of gene expression data of the first simulated data sets.
\(d2 \) Matrix of gene expression data of the second simulated data set.
\(\text{tot.genes} \) Number of total genes.
\(\text{gene.nb} \) Number of true survival genes to identify.
\(\text{zscore} \) An integer (1 or 0) specifying whether to apply Z-score normalization or not.

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

See Also

\texttt{proc.simulate}

\begin{verbatim}
\tt eval.subset
\end{verbatim}

\textit{Performance evaluation derived from a subset of a data set}

Description

Select a subset of a single data set and split it into the training and testing sets. Generate a gene signature from the training set and evaluate its performance on the testing set.

Usage

\begin{verbatim}
\tt eval.subset(x, y, censor, iter, method, gn.nb, train.nb)
\end{verbatim}

Arguments

\(x \) Matrix of gene expression data.
\(y \) Vector of survival time.
\(\text{censor} \) Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
\(\text{iter} \) An integer specifying the current iteration.
\(\text{method} \) A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the \texttt{p.adjust} function.
\(\text{gn.nb} \) An integer specifying the number of genes to select.
\(\text{train.nb} \) An integer specifying the sample size of the training set.
Details

In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes were ranked based on their likelihood ratio P-value and the top-gn_nb ranked genes with the smallest P-values were retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value

AUC and HR.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

excl.missing

Exclude missing samples

Description

Exclude samples with missing survival times.

Usage

`excl.missing(mat, phyno)`

Arguments

- `mat` Matrix of gene expression data.
- `phyno` A list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

Value

A list of two objects; (i) matrix of gene expression data of the patients with no missing survival times. (ii) the list of two vectors, survival time and censoring status of patients with no missing survival time time points.

Warning

This function is not called by the user directly.
Author(s)

Haleh Yasrebi

excl.missing.single.indep

Exclude missing samples prior to independent validation

Description

Exclude samples with missing survival time points prior to the application of independent validation to single data sets.

Usage

excl.missing.single.indep(geno.files, ind, surv.data, common.gene)

Arguments

geno.files A vector of character strings containing the names of the expression files.
ind Index of expression files in geno.files to combine.
surv.data The list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
common.gene A vector of character strings containing the names of the genes common to all data sets.

Value

A list of two objects, (i) Matrix of gene expression data of the patients with no missing survival time. (ii) The list of two vectors, survival time and censoring status of the patients with no missing survival time points.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi
excl.samples

Description

Time-dependent ROC curves could be plotted based on different survival time points at which an event has occurred. To this end, censored patients should be excluded so that the plot could be based on the time points at which an event has occurred.

Usage

```r
excl.samples(test.ind, surv, censor)
```

Arguments

- `test.ind` Vector of testing set index.
- `surv` Vector of survival time.
- `censor` Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

Value

Index of survival time points of the patients in the testing set who have experienced an event.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

featureselection

Description

Apply univariate Cox regression and rank the genes based on the Cox p-value.

Usage

```r
featureselection(gnExpMat, survivaltime, censor, method = "none", gn.nb)
```
Arguments

- **gnExpMat**: Matrix of gene expression data.
- **survivaltime**: Vector of survival time.
- **censor**: Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- **method**: A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the p.adjust function.
- **gnNb**: Number of genes to select for gene signature when method="none".

Details

In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-gn.nb ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value

A list of two vectors, the Cox coefficients and Cox p-values.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

References

featureselection.meta
Feature selection for meta analysis

Description

Apply univariate Cox regression and aggregate gene Z-scores.

Usage

`featureselection.meta(gnExpMat, survivaltime, censor)`
filter.absent

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gExpMat</td>
<td>Matrix of gene expression data.</td>
</tr>
<tr>
<td>survivaltime</td>
<td>Vector of survival time.</td>
</tr>
<tr>
<td>censor</td>
<td>Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.</td>
</tr>
</tbody>
</table>

Value

Vector of gene Z-scores.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

filterNabsent

Filter absent calls

Description

Filter data based on presence/absence call.

Usage

filter.absent(x, pct)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Matrix of gene expression data.</td>
</tr>
<tr>
<td>pct</td>
<td>Number of presence calls.</td>
</tr>
</tbody>
</table>

Value

A Boolean variable specifying the presence or absence call.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson
References

See Also

ComBat

generate.survival.data

Generate survival data.

Description

Generate survival data following a Weibull model with specified parameters such as Cox coefficients and correlation among genes. Then, identify a gene signature and assess its performance in cross-validation.

Usage

generate.survival.data(gene.nb, tot.genes, sample.nb, beta.init, correlation, shape, scale)

Arguments

gene.nb The number of genes to select.
tot.genes The total number of genes.
sample.nb The total number of samples.
beta.init Initial values for beta or Cox coefficients. The values between +/-0.5 to +/-3 are good choices.
correlation Correlation among genes. The value should be between 0 and 1.
shape Shape parameter of the Weibull model. Select a value between 1 and 5.
scale Scale parameter of the Weibull model. Select a value between 1 and 5.

Value

A list of three objects, (i) Matrix of simulated gene expression data, (ii) Vector of survival time and (iii) Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

Warning

This function is not called by the user directly.
gm

Author(s)
Haleh Yasrebi

See Also
proc.simulate

gm

Geometric Mean

Description
Calculates the geometric mean of a vector.

Usage

\[
\text{gm}(x)
\]

Arguments

\[
x \quad \text{Vector of numeric values.}
\]

Value

Geometric mean of \(x \).

Author(s)
Haleh Yasrebi

See Also

ci.gm
groups.cv Split a data set for cross-validation

Description
Define the folds of cross-validation.

Usage
groups.cv(n, ngroup, censor)

Arguments
n Sample size of a data set.
ngroup Number of folds of cross-validation.
censor Vector of censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

Details
The function avoids allocating only censored patients to the testing set. At least one patient having experienced an event is needed for the applicability of the Cox proportional hazard model.

Value
The folds of cross-validation.

Warning
This function is not called by the user directly.

Author(s)
Haleh Yasrebi

init.plot Start plotting

Description
Plot the coordinates with the main title and axis labels.

Usage
init.plot(file.name)
Arguments

file.name A character string specifying the name of the expression file to display.

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

int.eprior Integration function to find nonparametric adjustments

Description

Monte Carlo integration function to find the nonparametric adjustments

Usage

int.eprior(sdat, g.hat, d.hat)

Arguments

sdat Matrix of standardized gene expression data.
g.hat Estimated additive batch effect.
d.hat Estimated multiplicative batch effect.

Value

Matrix with two columns containing the estimated additive and multiplicative batch effects.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson
References

See Also

ComBat

inv.normal

Apply the inverse normal method.

Description

Apply the inverse normal method (Hedges and Olkin, 1985). For each data set, combine the Z-scores or Z-tests and divide them by the square root of the sample size of the data set.

Usage

`inv.normal(i, zstat)`

Arguments

- `i` Vector of integer variables containing the indices of data sets.
- `zstat` List of numeric vectors representing Z-tests or Z-scores.

Value

Vector of combined Z-tests.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

References

Description
Iterative solution for Empirical Bayesian method.

Usage
\[
\text{it.sol}(sdat, \text{g.hat}, \text{d.hat}, \text{g.bar}, t2, a, b, \text{conv} = 1e^{-04})
\]

Arguments
- **sdat**: Standardized matrix of gene expression data.
- **g.hat**: Estimated additive batch effect.
- **d.hat**: Estimated multiplicative batch effect.
- **g.bar**: Mean of g.hat.
- **t2**: Variance of the rows of g.hat.
- **a**: Value of the function \(\text{aprior} \) applied to multiplicative batch effect.
- **b**: Value of the function \(\text{bprior} \) applied to multiplicative batch effect.
- **conv**: Convergence threshold.

Value
Matrix of estimated additive and multiplicative batch effects.

Warning
This function is not called by the user directly.

Author(s)
WE Johnson.

References

See Also
\texttt{Combat, aprior, bprior}
iter.crossval Performance assessment of gene signatures by cross-validation.

Description
Assess the performance of a gene signature derived from a single or merged data set by ten iterations of cross validation.

Usage
iter.crossval(data, surv, censor, ngroup = 10, plot.roc = 0, method = "none", zscore = 0, gn.nb = 100, gn.nb.display = 0)

Arguments
data Matrix of gene expression data.
surv Vector of survival time.
censor Vector of censoring status. 1 = event occurred, 0 = censored.
group An integer specifying the number of cross-validation folds.
plot.roc An integer specifying whether the ROC curves should be plotted or not (1 or 0).
method A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the p.adjust function
zscore An integer specifying whether Z-score normalization should be applied or not (1 or 0). 1 if data is a merged data set or 0 if data is a single data set.
gn.nb An integer specifying the number of genes to select for gene signature.
gn.nb.display An integer specifying the number of selected genes to display.

Details
The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".
If the user wants to apply his own feature selection method, he should define his function with the same number of parameters as the defined feature selection function of the package, i.e. featureselection.
ROC curves are the plots of the mean of true positives (sensitivity) and the mean of false positives (1-specificity) over ngroup folds of cross-validation.

Value
Mean of AUC +/- standard deviation of AUC, geometric mean of HR(CI).

Author(s)
Haleh Yasrebi
References

See Also

iter.crossval.combat.

Examples

```r
## Single data set
data(gse4335)
data(gse4335pheno)

# And run the following script:
# iter.crossval(gse4335, gse4335pheno[,6], gse4335pheno[,5])

## To observe the frequency of the CYB5D1 gene selection, run the following script:
# iter.crossval(gse4335, gse4335pheno[,6], gse4335pheno[,5], gn.nb =1, gn.nb.display = 1)

## Merged data set
data(gse4335)
data(gse4335pheno)

data(gse1992)
data(gse1992pheno)

common.gene = intersect(colnames(gse4335), colnames(gse1992))

data = rbind(gse4335[,common.gene], gse1992[,common.gene])
surv = c(gse4335pheno[,6], gse1992pheno[,19])
censor = c(gse4335pheno[,5], gse1992pheno[,18])

# And run the following script:
# iter.crossval(data, surv,censor, zscore=1)

## The function is currently defined as
function(data, surv,censor,ngroup=10,plot.roc=0,method="none",zscore=0,gn.nb=100,gn.nb.display=0){
  require(survival)
  require(survivalROC)

  res = NULL

  file.name=deparse(substitute(data))
  if (plot.roc)
    init.plot(file.name)

  data=data[!is.na(surv),]
censor= censor[!is.na(surv)]
surv= surv[!is.na(surv)]
```
iter.crossval.combat

Merge data set by ComBat within cross-validation.

Description

Assess the performance of the gene signatures derived from the merged data set adjusted by ComBat by ten iterations of cross-validation.

Usage

iter.crossval.combat(data, surv, censor, batchID, ngroup = 10, plot.roc = 0, method = "none", gn.nb = 100)

Arguments

data Matrix of gene expression data.
surv Vector of survival times.
censor Vector of censoring status. 1 = event occurred, 0 = censored.
batchID For a given data set, the batch id can be an integer or the name of the data set. The batch id must be the same for all samples or arrays of a data set.
group An integer specifying the number of cross-validation folds.
plot.roc A integer (0 or 1) indicating whether the ROC curves should be plotted.
method A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the p.adjust function.
gn.nb An integer specifying the number of genes to select.
Details

The `p.adjust` function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

If the user wants to apply his own feature selection method, he should define his function with the same number of parameters as the defined feature selection function of the package, i.e. `featureselection`.

ROC curves are the plots of the mean of true positives (sensitivity) and the mean of false positives (1-specificity) over `ngroup` folds of cross-validation.

Value

Arithmetic mean of AUC +/- standard deviation (AUC) and geometric mean of HR(CI).

Author(s)

Haleh Yasrebi

References

See Also

`iter.crossval`

Examples

```r
require(survJamda.data)

data(gse4335)
data(gse4335pheno)

data(gse1992)
data(gse1992pheno)

common.gene = intersect(colnames(gse4335), colnames(gse1992))

data = rbind(gse4335[,common.gene], gse1992[,common.gene])
surv = c(gse4335pheno[,6],gse1992pheno[,19])
censor = c(gse4335pheno[,5],gse1992pheno[,18])

# An integer is used as batchID
batchID = rep(1,nrow(gse4335))
batchID = c(batchID,rep(2,nrow(gse1992)))

# Or the name of the data sets is used as batch ID
#batchID = rep("gse4335",nrow(gse4335))
#batchID = c(batchID,rep("gse1992",nrow(gse1992)))

# And run the following script:
```
iter.crossval.combat(data, surv, censor, batchID)

The function is currently defined as

```r
function (data, surv, censor, batchID, ngroup=10, plot roc = \0, method = \"none\", gn.nb = 100)
{
    require(survival)
    require(survivalROC)

    if(!exists("batchID"))
        stop("\rSet batchID", call.=FALSE)

    niter = ifelse(ngroup == length(surv), 1, 10)
    res = \null

    file.name=deparse(substitute(data))
    if (plot roc)
        init.plot(file.name)

    data =data[!is.na(surv),]
    censor= censor[!is.na(surv)]
    surv= surv[!is.na(surv)]

    cat ("Iteration\n\t\tAUC\n\t\tHR(CI)\n\t\tP-val\n")
    for (i in 1:niter){
        new.lst = cross.val.combat(data, surv, censor, method = "none",
            gn.nb, plot.roc, ngroup, i)
        res = rbind (res, new.lst)
    }

    if(ngroup != length(surv)){
        cat ("Avg AUC+/+-SD\n\t\tHR(CI)\n")
        if (plot roc)
            legend (c(0.55,0.1), legend = paste("AUC+/+-SD =", sprintf("%.2f",
                as.numeric(mean(res[,1],na.rm = TRUE))), ",+-", sprintf("%.2f",
                sd (res[,1],na.rm = TRUE))), sep = " "), bty = "n")

            cat (sprintf("%.2f",as.numeric(mean(res[,1], na.rm = TRUE))),
                
                sprintf("%.2f",sd (res[,1],na.rm = TRUE)), ",t",
                gm(res[,2]), ",", sprintf("%.2f",ci.gm(res[,2])[1]), ",-",
                 sprintf("%.2f",ci.gm(res[,2])[2]), ")\n", sep = "\"
            )
    }
}
```

iter.subset

Performance evaluation by subsetting data sets in 100 iterations

Description

A data set can be split to different subsets to determine if the performance derived from its subsets is improved by the increase of sample size. Each subset can then be split 100 times into the inde-
In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-gn.nb ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value

Mean of AUC +/- standard deviation of AUC, geometric mean of HR (CI).

Examples

data(gse4335)
data(gse4335pheno)
#The following script might be lengthy
#iter.subset(gse4335, gse4335pheno[,6],gse4335pheno[,5])
The function is currently defined as
function (data, surv, censor, method = "none", gn.nb = 50, train.nb = 100){

require (survival)
require (survivalROC)
data = data[!is.na(surv),]
censor = censor[!is.na(surv)]
surv = surv[!is.na(surv)]
res = NULL
iteration.nb = 100
cat("Iteration\tAUC\tHR\tCI\t\tP-val\n")
for (i in 1:iteration.nb){
 new.lst = eval.subset(data, surv, censor, i, method, gn.nb, train.nb)
 res = rbind (res, new.lst)
}

L

Likelihood function.

Description

Likelihood function.

Usage

L(x, g.hat, d.hat)

Arguments

x Matrix of gene expression data.

g.hat Estimated additive batch effect.
d.hat Estimated multiplicative batch effect.

Value

Likelihood estimate.
list.batch

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

```r
list.batch(saminfo)
```

Arguments

- `saminfo` Matrix of sample information.

Value

List of batches.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

See Also

ComBat
main.merge.indep.valid

Performance assessment of merged data sets by independent validation

Description

Assess the performance of survival prediction derived from the merged data sets by independent validation.

Usage

```r
main.merge.indep.valid(geno.files, surv.data, gn.nb=100, method = "none",
                      normalization = "zscore1", perf.eval = "auc")
```

Arguments

- `geno.files`: Vector of character strings containing the names of gene expression files.
- `surv.data`: List of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- `gn.nb`: Number of genes to select for gene signature when `method"none"`.
- `method`: A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the `p.adjust` function.
- `normalization`: A character string, "combat", "zscore1" or "zscore2".
- `perf.eval`: A string taking one the values, "auc", "cindex", "bsc".

Details

In Z-score1 normalization, all data sets are Z-score normalized separately and then, the data sets composing the training set are merged together. The remaining set is used as the testing set. This process is continued S times (S being the number of data sets) until all data sets are used in the training and testing sets.

In Z-score2 normalization, the data sets are selected for the training and testing sets. Suppose there are S data sets. Then, in S iteration, S-1 data sets are used for the training set and the remaining set used as the testing set. This process is continued until all data sets are used in the training and testing sets. In each iteration, the data sets composing the training set are first merged together and the merged data set is then Z-score normalized. The testing set is independently adjusted by Z-score normalization.

If the user wants to apply his own feature selection method, he should define his function with the same number of parameters as the defined feature selection function of the package, i.e. `featureselection`.

The `p.adjust` function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

If `perf.eval == "auc"`, time-dependent AUC and hazard ratio are used as the measure of performance, `perf.eval == "cindex"`, concordance index defined in the `survcomp` package or `perf.eval == "bsc"`, brier score defined in the `survcomp` package is used.
Value

AUC, HR(CI) and p-value.

Author(s)

Haleh Yasrebi

References

Examples

```r
require(survJamda.data)

data(gse4335)
data(gse3143)
data(gse1992)
data(gse4335pheno)
data(gse3143pheno)
data(gse1992pheno)

geno.files = c("gse4335", "gse3143", "gse1992")
surv.data = list(c(gse4335pheno[,6], gse3143pheno[,4], gse1992pheno[,19]),
                   c(gse4335pheno[,5], gse3143pheno[,3], gse1992pheno[,18]))

#The following script might take some time
#main.merge.indep.valid(geno.files, surv.data)

function(geno.files, surv.data, method = "none", normalization= "zscore", perf.eval = "auc")
{
    require(survival)
    require(survivalROC)

    if (length(geno.files) < 3)
        stop("rThere should be minimum 3 data sets", call. = FALSE)

    if(normalization == "combat")
        batchID = det.batchID()

    if (!is.element(normalization, c("zscore", "combat")))
        stop("rnormalization = \"zscore\" or normalization = \"combat\"",
             call.=FALSE)

    common.gene = colnames(get(geno.files[1]))
    for (i in 2:length(geno.files))
        common.gene = intersect(common.gene, colnames(get(geno.files[i])))

    curr_set = 1:length(geno.files)
    for (y in curr_set){
```
main.process

```r
x = setdiff(curr_set, y)
prep = get(paste("prep",normalization, sep = ""))
lst = prep(common.gene,geno.files,surv.data,x,y)

if (normalization == "zscore1" || normalization == "combat")
    splitMerged.indep (geno.files,lst, x, y, method, perf.eval)
else
    splitZscore2.merge.indep (common.gene,geno.files,surv.data,
lst, x, y, method, perf.eval)
```

Description

Plot time-dependent ROC curves based on different time points.

Usage

```r
main.process(common.gene, geno.files, surv.data, method = "none", time.dep)
```

Arguments

- **common.gene**: Vector of character strings containing the names of the genes common to all data sets.
- **geno.files**: Vector of character strings containing the names of expression files.
- **surv.data**: The list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- **method**: A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the p.adjust function.
- **time.dep**: An integer 0 or 1, 1 to plot time-dependent ROC curves for different time points and 0 for no plot.

Details

In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value

ROC curves plot and AUC values on the plot.
Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

main.single.indep.valid

Independent validation of the performance of the gene signatures derived from single data sets.

Description

Assess the performance of the gene signatures derived from the single data sets in pair-wise manner.

Usage

```r
main.single.indep.valid(geno.files, surv.data, normalization = "zscore", method = "none", gn.nb=100, perf.eval = "auc")
```

Arguments

- `geno.files`: A vector of character strings containing the names of expression files.
- `surv.data`: The list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- `normalization`: A character string, "combat" or "zscore".
- `method`: A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the `p.adjust` function.
- `gn.nb`: Number of genes to select for gene signature when method="none".
- `perf.eval`: A string taking one the values, "auc", "cindex", "bsc".

Details

If the user wants to apply his own feature selection method, he should define his function with the same number of parameters as the defined feature selection function of the package, i.e. `featureselection`.

The `p.adjust` function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

If `perf.eval` == "auc", time-dependent AUC and hazard ratio are used as the measure of performance, `perf.eval` == "cindex", concordance index defined in the `survcomp` package or `perf.eval` == "bsc", brier score defined in the `survcomp` package is used.

Value

AUC, HR(CI) and p-value.
Author(s)
Haleh Yasrebi

References

See Also
znorm, Combat

Examples
require(survJamda.data)
data(gse4335)
data(gse3143)
data(gse1992)
data(gse4335pheno)
data(gse3143pheno)
data(gse1992pheno)

`geno.files = c("gse4335", "gse3143","gse1992")`
`surv.data = list(c(gse4335pheno[,6],gse3143pheno[,4],gse1992pheno[,19]),
c(gse4335pheno[,5],gse3143pheno[,3],gse1992pheno[,18]))`

#The following script might take some time
#main.single.indep.valid(geno.files, surv.data)
The function is currently defined as
`function(geno.files, surv.data,normalization = "zscore", method = "none", perf.eval = "auc") {
 require(survival)
 require(survivalROC)

 if (!is.element(normalization, c("zscore","combat")))
 stop("rnormalization = \"zscore\" or normalization = \"combat\",
call.=FALSE)

 if(normalization == "combat")
 batchID = det.batchID()

 for (i in 1:length(geno.files)){
 for (j in 1:length(geno.files))
 if (i != j){
 common.gene = intersect(colnames(get(geno.files[i])),
colnames(get(geno.files[j])))
 ds1 = excl.missing.single.indep(geno.files[i],
surv.data,common.gene)
 ds2 = excl.missing.single.indep(geno.files[j],
surv.data,common.gene)
 }
if (normalization == "combat")
 mat = prepcombat.single.indep(ds1$mat,ds2$mat)
else
 mat = prepzscore(ds1$mat,ds2$mat)

i.adj = mat[1:nrow(ds1$mat),]
j.adj = mat[(nrow(ds1$mat)+1):nrow(mat),]
cat("Train data set: ", geno.files[j], " Test data set: ",
geno.files[i], \\
 "\n")
calPerformance.single.indep(list(mat=j.adj,phyno=ds2$phyno,perf.eval),
 list(mat=i.adj,phyno=ds1$phyno), method=method,perf.eval)

}
}

meta.main
Meta analysis of survival data.

Description
Meta analysis of microarray gene expression data for survival prediction.

Usage
```
meta.main(geno.files, surv.data, method = "none")
```

Arguments
- **geno.files**: A vector of character strings containing the names of expression files.
- **surv.data**: The list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- **method**: A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the p.adjust function.

Details
In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value
AUC, HR(CI) and p-value.
Author(s)

Haleh Yasrebi

Examples

```r
require(survJamda.data)

data(gse4335)
data(gse3143)
data(gse1992)

data(gse4335pheno)
data(gse3143pheno)
data(gse1992pheno)

geno.files = c("gse4335", "gse3143","gse1992")
surv.data = list(c(gse4335pheno[,6],gse3143pheno[,4],gse1992pheno[,19]),
c(gse4335pheno[,5],gse3143pheno[,3],gse1992pheno[,18]))

#The following script might take some time
#meta.main(geno.files, surv.data)

## The function is currently defined as
function(geno.files, surv.data, method = "none")
{
  options(warn=-1)
  curr_set = 1:length(geno.files)
  for (y in curr_set){
    x = setdiff(curr_set, y)
    data.set.meta (x, y, geno.files, surv.data, method)
  }
}
```

plot.roc.curves

Plot ROC curves of the testing set normalized by a joint analysis method.

Description

Plot ROC curves of the testing set normalized by a joint analysis method, Z-score2, Z-score1 or ComBat.

Arguments

- **surv**: The vector of survival times of the testing set.
- **censor**: The vector of censoring status of the testing set.
- **lp**: The vector of biomarkers derived from the testing set.
- **test**: The matrix of the testing set.
plot.time.dep

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file.name</td>
<td>The name of the file of the testing set.</td>
</tr>
<tr>
<td>col</td>
<td>The color of the ROC curve.</td>
</tr>
<tr>
<td>normalization</td>
<td>The normalization method, Z-score2, Z-score1 or ComBat.</td>
</tr>
</tbody>
</table>

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

References

plot.time.dep

Plot time-dependent ROC curves from 0 to 120 months.

Description

Plot time-dependent ROC curves for the testing set from 0 to 120 months. As the clinical trials are carried out up to 10 years, the maximum time point is limited to 120 months.

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>surv</td>
<td>The vector of survival times of the testing set.</td>
</tr>
<tr>
<td>censor</td>
<td>The vector of censoring status of the testing set.</td>
</tr>
<tr>
<td>lp</td>
<td>The vector of biomarkers derived from the testing set.</td>
</tr>
<tr>
<td>test</td>
<td>The matrix of the testing set.</td>
</tr>
<tr>
<td>file.name</td>
<td>The name of the file of the testing set.</td>
</tr>
<tr>
<td>col</td>
<td>The color of the ROC curve.</td>
</tr>
</tbody>
</table>

Value

None.

Warning

This function is not called by the user directly.
Author(s)

Haleh Yasrebi

References

plotROC

Plot ROC curves related to different time points.

Description

Plot time-dependent AUC based on different survival time points.

Arguments

- `test.ind`: Index of testing set.
- `all.surv`: Vector of combined survival times.
- `all.censor`: Vector of combined censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- `lp`: Vector of linear predictor scores or markers. lp is the sum of gene expression values weighted by the Cox coefficients.
- `file.name`: Vector of character strings containing the names of expression files.
- `col`: Color of ROC curve.
- `normalization`: The normalization method, Z-score2, Z-score1 or ComBat.
- `time.dep`: An integer 0 or 1, 1 to plot time-dependent ROC curves for different time points and 0 for no plot

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi
Description

Combine the expression data, survival data (survival time and censoring status) and gene Z-scores for meta analysis.

Usage

```
pool.zscores(common.gene, s, geno.files, surv.data)
```

Arguments

- `common.gene`: A vector of character strings containing the name of the genes common to the data sets composing the training set.
- `s`: A vector of integers specifying the index of the expression files composing the training set.
- `geno.files`: A vector of character strings consisting of the names of the expression files.
- `surv.data`: A list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

postmean

```
Estimated additive batch effect
```

Description

Estimated additive batch effect

Usage

```
postmean(g.hat, g.bar, n, d.star, t2)
```
postvar

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.hat</td>
<td>Theoretical estimated additive batch effect.</td>
</tr>
<tr>
<td>g.bar</td>
<td>Mean of g.hat</td>
</tr>
<tr>
<td>n</td>
<td>A vector containing the sum of the rows of standardized gene expression data.</td>
</tr>
<tr>
<td>d.star</td>
<td>Multiplicative batch effect.</td>
</tr>
<tr>
<td>t2</td>
<td>Variance of the rows of g.hat.</td>
</tr>
</tbody>
</table>

Value

Empirical estimated additive batch effect.

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

See Also

ComBat, it.sol

postvar

Estimated multiplicative batch effect

Description

Estimated multiplicative batch effect

Usage

`postvar(sum2, n, a, b)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum2</td>
<td>Batch sample variance.</td>
</tr>
<tr>
<td>n</td>
<td>A vector containing the sum of the rows of standardized gene expression data.</td>
</tr>
<tr>
<td>a</td>
<td>Value of aprior function applied to multiplicative batch effect.</td>
</tr>
<tr>
<td>b</td>
<td>Value of bprior function applied to multiplicative batch effect.</td>
</tr>
</tbody>
</table>
pred.time.indep.valid

Value

Estimated multiplicative batch effect

Warning

This function is not called by the user directly.

Author(s)

WE Johnson

References

See Also

ComBat, aprior, bprior

Description

Identify the gene list common to all single data sets and invoke the subsequent function main.process.

Usage

```
pred.time.indep.valid(geno.files, surv.data, method = "none", time.dep = 0)
```

Arguments

- `geno.files`: A vector of character strings containing the names of gene expression files.
- `surv.data`: A list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- `method`: A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the p.adjust function.
- `time.dep`: An integer 0 or 1, 1 to plot time-dependent ROC curves for different time points and 0 for no plot

Value

None.
Author(s)
Haleh Yasrebi

Examples

```r
require(survJamda.data)

data(gse4335)
data(gse3143)
data(gse1992)

data(gse4335pheno)
data(gse3143pheno)
data(gse1992pheno)

geno.files = c("gse4335","gse1992","gse3143")
surv.data = list(c(gse4335pheno[,6],gse1992pheno[,19],gse3143pheno[,4]),
                 c(gse4335pheno[,5],gse1992pheno[,18],gse3143pheno[,3]))
#pred.time.indep.valid(geno.files, surv.data)

## The function is currently defined as
function(geno.files, surv.data) {
  common.gene = colnames(get(geno.files[1]))
  for (i in 2:length(geno.files))
    common.gene = intersect(common.gene, colnames(get(geno.files[i])))

  par(mfrow = c(1,length(geno.files)))
  par oma=c(2,2,length(geno.files),2))

  main.process (common.gene, geno.files, surv.data)
}
```

prepcombat

Combination of data sets prior to the application of ComBat.

Description

Combine the gene expression data, survival time and censoring status of at least two data sets prior to the application of ComBat.

Usage

```
prepcombat(common.gene, geno.files, surv.data, batchID, x, y)
```
prepcombat.single.indep

Arguments

- `common.gene`: Vector of character strings specifying the names of the genes common to all single data sets.
- `geno.files`: Vector of character strings specifying the names of gene expression files.
- `surv.data`: The list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- `batchID`: For a given data set, the batch id can be an integer or the name of the data set. The batch id must be the same for all samples or arrays of a data set.
- `x`: Vector of character strings specifying the names of gene expression files composing the training set.
- `y`: A vector of character string specifying the name of gene expression file used as the testing set.

Value

A list of two objects, (i) ComBat-adjusted gene expression data and (ii) the list of two vectors, the merged survival time and censoring status.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

Description

Pair-wise combination of single data sets prior to the application of ComBat and independent validation.

Usage

prepcombat.single.indep(ds1, ds2, i, j, batchID)
Arguments

- **ds1**: Matrix of gene expression data of one of the single data sets.
- **ds2**: Matrix of gene expression data of the other single data sets.
- **i**: An integer or character string specifying the batch ID of the data set `ds1`.
- **j**: An integer or character string specifying the batch ID of the data set `ds2`.
- **batchID**: The batch id can be an integer for a given data set or the name of a data set. The batch id must be the same for all samples or arrays of a data set.

Value

ComBat-adjusted merged gene expression data.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

Description

Take two data sets, apply Z-score normalization to each and combine the two normalized data sets.

Usage

```r
dprepzscore(i, j)
```

Arguments

- **i**: Matrix of gene expression data of the one of the two single data sets.
- **j**: Matrix of gene expression data of the other single data set.

Value

Matrix of Z-score normalized merged data set.

Author(s)

Haleh Yasrebi
Examples

```r
require(survJamda.data)

data(gse4335)
data(gse1992)

common.gene = intersect(colnames(gse4335), colnames(gse1992))
##m = prepzscore(gse4335[,common.gene], gse1992[,common.gene])
```

```
## The function is currently defined as
function (i, j)
{
  i = scale(t(scale(t(i))))
  j = scale(t(scale(t(j))))
  mat = rbind(i, j)
  return(mat)
}
```

prepzscore1
Apply Z-score normalization.

Description

Apply Z-score normalization before combining the data sets together. Each data set is Z-score normalized separately and then, the data sets composing the training sets are combined together. The testing set is Z-score normalized independently and separately from the training set.

Usage

```r
prepzscore1(common.gene, geno.files, surv.data, x, y)
```

Arguments

- `common.gene`
 A vector of character strings containing the name of the genes common to the data sets composing the training set.
- `geno.files`
 A vector of character strings containing the names of expression files.
- `surv.data`
 The list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- `x`
 A vector of indices of the names of the expression files composing the training set.
- `y`
 Index of the name of expression file used as the testing set.

Value

A list of two objects, (i) the matrix of combined normalized gene expression data and (ii) a list of two vectors, the combined survival times and censoring status.
Warning
This function is not called by the user directly.

Author(s)
Haleh Yasrebi

See Also
znorm

prepzscore2
Apply Z-score2 normalization.

Description
Apply Z-score2 normalization. First, combine the data sets composing the training set and then, apply Z-score normalization to the merged data set.

Usage

```r
prepzscore2(commonNgene, genoNfiles, survNdata, x, y)
```

Arguments

- **commonNgene**: Vector of character strings containing the names of the genes common to the all data sets.
- **genoNfiles**: A vector of character strings containing the names of gene expression files.
- **survNdata**: The list of two vectors, survival time and censoring status related to the training set. In the censoring status vector, 1 = event occurred, 0 = censored.
- **x**: A vector of indices of the names of data files composing the training set.
- **y**: Index of the name of data file used as the testing set.

Value
A list of two objects related to the training set, (i) the matrix of Z-score normalized merged gene expression data and (ii) a list of two vectors, the combined survival time and censoring status.

Warning
This function is not called by the user directly.

Author(s)
Haleh Yasrebi
proc.simulate Simulate survival data.

Description

Simulation of survival data using a Weibull model. Two scenarios could be considered: Simulate gene expression values with and without correlation among genes. The aim is to determine if the prediction performance derived from the merged data set is mediated by the correlation among genes.

Usage

```r
proc.simulate(tot.genes = 100, correlation = 0, gene.nb = 50, sample.nb = 400, beta.init = 0.5, shape = 1, scale = 1)
```

Arguments

tot.genes Number of total genes.
correlation Correlation among genes (between 0 and 1).
gene.nb Number of true survival genes to identify.
sample.nb Sample size.
beta.init Initial value for the Cox coefficients.
shape Shape parameter of the Weibull model.
scale Scale parameter of the Weibull model.

Details

beta should not be close to zero. Otherwise, the true genes cannot be identified. Values between +/- 0.2 and +/- 3 would be good choices. Shape and scale should be selected between 1 and 2 (integer, preferably).

Value

Mean of AUC +/- standard deviation(AUC), geometric mean of HR (CI).

Warning

The user must enter a value for beta, scale and shape different from the initial values when (s)he is asked to do so. Otherwise, the old values are used for the second data set which will make the second data set have the same distribution as the first data set which is not desired.

Author(s)

Haleh Yasrebi
Examples

Using the default parameters, run the following script:
proc.simulate()

Other values to be used:
correlation = 0.8
number of genes: 10, 1000, 5000

The function is currently defined as
function(tot.genes = 100, correlation = 0, gene.nb = 50, sample.nb = 400, beta.init = 0.5, shape = 1, scale = 1) {
 require(survival)
 require(survivalROC)
 require(ecodist)

d1 = generate.survival.data(gene.nb, tot.genes, sample.nb, beta.init, correlation, shape, scale)
old.beta.init = beta.init

 cat("Enter a different value for beta for the second data set:
 Example: beta.init = 0.1\n")
 beta.init = as.numeric(readline())
 old.shape = shape
 old.scale = scale

 cat("Enter a different value for shape for the second data set.
 Enter only a numeric value. Example: 2\n")
 shape = as.numeric(readline())
 if (!is.numeric(shape))
 shape = old.shape

 cat("Enter a different value for scale for the second data set.
 Enter only a numeric value. Example: 1.5\n")
 scale = as.numeric(readline())
 if (!is.numeric(scale))
 scale = old.scale

d2 = generate.survival.data(gene.nb, tot.genes, sample.nb, beta.init, correlation, shape, scale)

 eval.merge.simulate(d1, d2, tot.genes, gene.nb, zscore = 1)
}

shuffle.samples

Description

To ensure the applicability of Cox regression, the function splits the samples randomly and assigns at least one deceased or relapsed patient to the training and testing sets.
Usage

shuffle.samples(n, censor, train.nb)

Arguments

n Sample size of the complete data set.
censor Vector of censoring status. 1 = event occurred, 0 = censored.
train.nb Number of samples in the training set.

Value

List of two vectors, the indices of the training set and the indices of the testing set.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

splitMerged.auc.plot
Determine the indices of the training and testing sets.

Description

Determine the indices of the training and testing sets prior to the plot of ROC curves.

Usage

splitMerged.auc.plot(geno.files, lst, i, j, col, method, time.dep)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>geno.files</td>
<td>A vector of character strings containing the names of the expression files.</td>
</tr>
<tr>
<td>lst</td>
<td>A list of two objects, (i) gene expression data and (ii) list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.</td>
</tr>
<tr>
<td>i</td>
<td>A vector of character strings containing the names of the expression files used for the training set.</td>
</tr>
<tr>
<td>j</td>
<td>A character string specifying the name of the expression file used as the testing set.</td>
</tr>
<tr>
<td>col</td>
<td>Color of ROC curve.</td>
</tr>
<tr>
<td>method</td>
<td>A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the p.adjust function</td>
</tr>
<tr>
<td>time.dep</td>
<td>An integer 0 or 1, 1 to plot time-dependent ROC curves for different time points and 0 for no plot</td>
</tr>
</tbody>
</table>
Details

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

Arguments

geno.files: a vector of character containing the names of gene expression data files.

lst: A list of two objects, (i) gene expression data and (ii) list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
i: Index of the names of the expression files composing the training set.
j: Index of the name of the expression file used as the testing set.
method: A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting method specifying by the p.adjust function

gn.nb: Number of genes to select for gene signature when method="none".

perf.eval: A string taking one the values, "auc", "cindex", "bsc".
normalization: A character string specifying the normalization method, "zsore1", "zsore2" or "combat".
splitZscore2.auc.plot

Details
The `p.adjust` function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if `method` != "none".

If `perf.eval` == "auc", time-dependent AUC and hazard ratio are used as the measure of performance, `perf.eval` == "cindex", concordance index defined in the `survcomp` package or `perf.eval` == "bsc", brier score defined in the `survcomp` package is used.

Value
None.

Warning
This function is not called by the user directly.

Author(s)
Haleh Yasrebi

References

splitZscore2.auc.plot Z-score2 normalization prior to AUC plot.

Description
For independent validation, merge survival time and censoring status of the data sets composing the training set and apply the Z-score normalization prior to the plot of AUC.

Usage
`splitZscore2.auc.plot(common.gene, geno.files, surv.data, lst, i, j, col, method, time.dep)`

Arguments
- `common.gene`: A vector of character strings containing the names of the genes common to the all data sets.
- `geno.files`: A vector of character strings containing the names of gene expression files.
- `surv.data`: A list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.
- `lst`: The list of two objects, (i) matrix of gene expression data and (ii) list of two vectors, survival time and censoring status.
Index of the file names composing the training set.

Index of the file name used as the testing set.

Color of ROC curve.

A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the `p.adjust` function.

An integer 0 or 1, 1 to plot time-dependent ROC curves for different time points and 0 for no plot.

Details

Z-score2 normalization is performed as follows: First, the data sets are selected for the training and testing sets. Suppose there are S data set. Then, in S iteration, $S-1$ data sets are selected as the training set and the remaining set selected as the testing set until all data sets are used in the training and testing sets. The data sets composing the training set are merged together and the merged data set is then Z-score normalized. The testing set is independently adjusted by Z-score normalization.

In top-ranking, genes are selected based on univariate Cox P-value ranking using the `coxph` function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.

The `p.adjust` function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if `method` != "none".

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

splitZscore2.merge.indep

Merge data sets by Z-score2 normalization and assess the performance by independent validation.

Description

Z-score2 normalization is performed as follows: First, the data sets are selected for the training and testing sets. Suppose there are S data set. Then, in S iteration, $S-1$ data sets selected as the training set and the remaining set as the testing set until all data sets are used in the training and testing sets. The data sets composing the training set are merged together and the merged data set is then Z-score normalized. The testing set is independently adjusted by Z-score normalization.
Usage

splitZscore2.merge.indep(common.gene, geno.files, surv.data, lst, i, j, method, gn.nb, perf.eval, normalization)

Arguments

common.gene A vector of character strings containing the names of the genes common to the datasets composing the training set.

geno.files A vector of character strings containing the names of the expression files.

surv.data A list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored.

lst The list of two objects, the gene expression data and surv.data.

i Index of the names of the expression files composing the training set.

j Index of the name of the expression file used as the testing set.

method A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the p.adjust function.

gn.nb Number of genes to select for gene signature when method="none".

perf.eval A string taking one the values, "auc", "cindex", "bsc".

normalization A character string specifying the normalization method, "zscore1", "zscore2" or "combat".

Details

In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.

The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method != "none".

If perf.eval == "auc", time-dependent AUC and hazard ratio are used as the measure of performance, perf.eval == "cindex", concordance index defined in the survcomp package or perf.eval == "bsc", brier score defined in the survcomp package is used.

Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi
trim.dat

Trim the data.

Description
Trim the data of extra columns with array names 'X' or start with 'X.'

Usage
trim.dat(dat)

Arguments
dat Matrix of gene expression data.

Value
Matrix of gene expression data trimmed as specified in Description section.

Warning
This function is not called by the user directly.

Author(s)
WE Johnson

References

writeGeno

Reformat gene expression data for ComBat.

Description
Reformat gene expression data for ComBat.

Usage
writeGeno(x, fileName)
writeSamples

Arguments
 x Matrix of gene expression data to be adjusted.
 fileName A character string specifying the name of the file in which the adjusted data
 should be saved.

Value
 None.

Warning
 This function is not called by the user directly.

Author(s)
 Haleh Yasrebi

See Also
 writeSamples, ComBat

writeSamples(x, batchID, fileName)

Description
 Create a file for the batch IDs of the data sets.

Usage
 writeSamples(x, batchID, fileName)

Arguments
 x Matrix of gene expression data.
 batchID A vector containing the batch IDs of the data set x. The batch ID of the data sets
 composing the matrix x should be in the same order of the component data sets.
 fileName A character string specifying the name of the file to be created.

Details
 This function writes two columns in a file: Array.name and Batch. The Array.name column contains
 the array or sample ID which are the row names of the matrix x. The batch id in the second column
 can be an integer or the name of the data set. The batch id must be the same for all samples or arrays
 of a data set.
Value

None.

Warning

This function is not called by the user directly.

Author(s)

Haleh Yasrebi

See Also

writeGeno, ComBat

znorm

Matrix Z-score normalization.

Description

Z-score normalization of a matrix

Usage

```r
znorm(m)
```

Arguments

- `m` Matrix of gene expression data.

Value

Z-score normalized matrix of gene expression data `m`.

Author(s)

Haleh Yasrebi

References

Examples

```r
require(survJamda.data)

data(gse4335)
data(gse3143)

common.gene = intersect(colnames(gse3143), colnames(gse4335))
m = znorm(rbind(gse3143[,common.gene], gse4335[,common.gene]))

## The function is currently defined as
function(m)
{
  m = scale(t(scale(t(m))))
  return(m)
}
```
Index

*Topic **ComBat**
aprior, 4
Beta.NA, 5
bprior, 6
build.design, 7
ComBat, 14
combat.likelihood, 16
compute.combat, 17
cross.val.combat, 17
det.batchID, 21
filter.absent, 29
int.eprior, 33
it.sol, 35
iter.crossval.combat, 38
list.batch, 43
postmean, 53
postvar, 54
prepcombat, 56
prepcombat.single.indep, 57
writeGeno, 68
writeSamples, 69

*Topic **Meta analysis**
calPerformance.meta, 10
det.set.meta, 22
featureselection.meta, 28
meta.main, 49

*Topic **Plot**
cross.val.combat, 17
cross.val.surv, 19
init.plot, 32
iter.crossval, 36
iter.crossval.combat, 38
plotROC, 52
splitZscore2.auc.plot, 65

*Topic **Z-score normalization**
prepzscore, 58
prepzscore1, 59
prepzscore2, 60
splitZscore2.auc.plot, 65
splitZscore2.merge.indep, 66
znorm, 70

*Topic **package**
survJamda.package, 3

*Topic **survivalROC**
cross.val.combat, 17
cross.val.surv, 19
iter.crossval, 36
iter.crossval.combat, 38

*Topic **survival**
cross.val.combat, 17
cross.val.surv, 19
iter.crossval, 36
iter.crossval.combat, 38

*Topic
filter.absent, 29

aprior, 4, 6, 35, 55
Beta.NA, 5
bprior, 4, 6, 35, 55
build.design, 7

cal.cox.coef, 7
calPerformance.auc.plot, 8
calPerformance.merge.indep, 9
calPerformance.meta, 10
calPerformance.single.indep, 11
ci.gm, 13, 31
comb.surv.censor, 14
ComBat, 4–6, 14, 16, 30, 34, 35, 43, 48, 54, 55, 69, 70
combat.likelihood, 16
compute.combat, 17
concordance.index, 4
corgen, 4
coxph, 4
cross.val.combat, 17
cross.val.surv, 19
design.mat, 20