Describing PPS designs to R

Thomas Lumley

June 22, 2017

The survey package has always supported PPS (ie, arbitrary unequal probability) sampling with replacement, or using the with-replacement single-stage approximation to a multistage design. No special notation is required: just specify the correct sampling weights.

Version 3.11 added an another approximation for PPS sampling without replacement, and version 3.16 added more support. There are two broad classes of estimators for PPS sampling without replacement: approximations to the Horvitz–Thompson and Yates–Grundy estimators based on approximating the pairwise sampling probabilities, and estimators of Hájek type that attempt to recover the extra precision of a without-replacement design by conditioning on the estimated population size.

Direct approximations

Using the standard recursive algorithm for stratified multistage sampling when one or more stages are actually PPS gives an approximation due to Brewer. This is simple to compute, always non-negative, and appears to be fairly efficient.

Approximating \(\pi_{ij} \)

Given the pairwise sampling probabilities \(\pi_{ij} \), we can define the weighted covariance of sampling indicators

\[
\hat{\Delta}_{ij} = 1 - \frac{\pi_i \pi_j}{\hat{\pi}_{ij}}
\]

and the weighted observations

\[
\hat{x}_i = \frac{1}{\pi_i} x_i.
\]

Two unbiased estimators of the variance of the total of \(x \) are the Horvitz–Thompson estimator

\[
\hat{V}_{HT} = \sum_{i,j=1}^{n} \hat{\Delta}_{ij} \hat{x}_i \hat{x}_j
\]

and the Yates–Grundy(–Sen) estimator

\[
\hat{V}_{YG} = \frac{1}{2} \sum_{i,j=1}^{n} \Delta (\hat{x}_i - \hat{x}_j)^2
\]

The Yates–Grundy estimator appears to be preferred in most comparisons. It is always non-negative (up to rounding error, at least).
In principle, π_{ij} might not be available and various approximations have been proposed. The (truncated) Hartley–Rao approximation is

$$\Delta_{ij} = 1 - \frac{n - \pi_i - \pi_j + \sum_{k=1}^{N} \pi_k^2 / n}{n - 1}$$

which requires knowing π_i for all units in the population. The population sum can be estimated from the sample, giving a further approximation

$$\Delta_{ij} = 1 - \frac{n - \pi_i - \pi_j + \sum_{k=1}^{n} \pi_k / n}{n - 1}$$

that requires only the sample π_i. Overton’s approximation is

$$\Delta_{ij} = 1 - \frac{n - (\pi_i + \pi_j)/2}{n - 1}$$

which also requires only the sample π_i.

In practice, given modern computing power, π_{ij} should be available either explicitly or by simulation, so the Hartley–Rao and Overton approximations are not particularly useful.

0.1 Using the PPS estimators

At the moment, only Brewer’s approximation can be used as a component of multistage sampling, though for any sampling design it is possible to work out the joint sampling probabilities and use the other approaches. The other approaches can be used for cluster sampling or for sampling of individual units. This is likely to change in the future.

To specify a PPS design, the sampling probabilities must be given in the prob argument of svydesign, or in the fpc argument, with prob and weight unspecified. In addition, it is necessary to specify which PPS computation should be used, with the pps argument. The optional variance argument specifies the Horvitz–Thompson (variance="HT") or Yates–Grundy (variance="YG") estimator, with the default being "HT".

Some estimators require information in addition to the sampling probabilities for units in the sample. This information is supplied to the pps= argument of svydesign using wrapper functions that create objects with appropriate classes. To specify the population sum $\sum p_i^2/n$ needed for the Hartley–Rao approximation, use HR(), and to specify a matrix of pairwise sampling probabilities use ppsmat(). The function HR() without an argument will use the Hartley–Rao approximation and estimate the population sum from the sample.

The data set election contains county-level voting data from the 2004 US presidential elections, with a PPS sample of size 40 taken using Tillé’s splitting method, from the sampling package. The sampling probabilities vary widely, with Los Angeles County having a probability of 0.9 and many small counties having probabilities less than 0.0005.

> library(survey)
> data(election)
> summary(election$p)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000014</td>
<td>0.0007260</td>
<td>0.0022498</td>
<td>0.0086957</td>
<td>0.0057289</td>
<td>0.9036576</td>
</tr>
</tbody>
</table>

> summary(election_pps$p)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001429</td>
<td>0.0153794</td>
<td>0.0398065</td>
<td>0.1106639</td>
<td>0.1103490</td>
<td>0.9036576</td>
</tr>
</tbody>
</table>
Some possible survey design specifications for these data are:

```r
> ## Hajek type
> dpps_br <- svydesign(id=~1, fpc=~p, data=election_pps, pps="brewer")
> ## Horvitz-Thompson type
> dpps_ov <- svydesign(id=~1, fpc=~p, data=election_pps, pps="overton")
> dpps_hr <- svydesign(id=~1, fpc=~p, data=election_pps, pps=HR(sum(election$p^2)/40))
> dpps_hr1 <- svydesign(id=~1, fpc=~p, data=election_pps, pps=HR())
> dpps_ht <- svydesign(id=~1, fpc=~p, data=election_pps, pps=ppsmat(election_jointprob))
> ## Yates-Grundy type
> dpps_yg <- svydesign(id=~1, fpc=~p, data=election_pps, pps=ppsmat(election_jointprob), variance="YG")
> dpps_hryg <- svydesign(id=~1, fpc=~p, data=election_pps, pps=HR(sum(election$p^2)/40), variance="YG")
> ## The with-replacement approximation
> dpps_wr <- svydesign(id=~1, probs=~p, data=election_pps)
```

All the without-replacement design objects except for Brewer’s method include a matrix \(\hat{\Delta} \). These can be visualized with the `image()` method. These plots use the `lattice` package and so need `show()` to display them inside a program:

```r
> show(image(dpps_ht))
> show(image(dpps_ov))
```
In this example there are more negative entries in $\hat{\Delta}$ with the approximate methods than when the full pairwise sampling matrix is supplied.

The estimated totals are the same with all the methods, but the standard errors are not.

> svytotal(~Bush+Kerry+Nader, dpps_ht)

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush</td>
<td>64518472</td>
<td>2604404</td>
</tr>
<tr>
<td>Kerry</td>
<td>51202102</td>
<td>2523712</td>
</tr>
<tr>
<td>Nader</td>
<td>478530</td>
<td>102326</td>
</tr>
</tbody>
</table>

> svytotal(~Bush+Kerry+Nader, dpps_yg)

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush</td>
<td>64518472</td>
<td>2406526</td>
</tr>
<tr>
<td>Kerry</td>
<td>51202102</td>
<td>2408091</td>
</tr>
<tr>
<td>Nader</td>
<td>478530</td>
<td>101664</td>
</tr>
</tbody>
</table>

> svytotal(~Bush+Kerry+Nader, dpps_hr)

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush</td>
<td>64518472</td>
<td>2624662</td>
</tr>
<tr>
<td>Kerry</td>
<td>51202102</td>
<td>2525222</td>
</tr>
<tr>
<td>Nader</td>
<td>478530</td>
<td>102793</td>
</tr>
</tbody>
</table>
> svytotal(~Bush+Kerry+Nader, dpps_hrg)

 total SE
Bush 64518472 2436738
Kerry 51202102 2439845
Nader 478530 102016

> svytotal(~Bush+Kerry+Nader, dpps_hr1)

 total SE
Bush 64518472 2472753
Kerry 51202102 2426842
Nader 478530 102595

> svytotal(~Bush+Kerry+Nader, dpps_br)

 total SE
Bush 64518472 2447629
Kerry 51202102 2450787
Nader 478530 102420

> svytotal(~Bush+Kerry+Nader, dpps_ov)

 total SE
Bush 64518472 2939608
Kerry 51202102 1964632
Nader 478530 104373

> svytotal(~Bush+Kerry+Nader, dppswr)

 total SE
Bush 64518472 2671455
Kerry 51202102 2679433
Nader 478530 105303