Package ‘tableplot’

February 20, 2015

Type Package
Title Represents tables as semi-graphic displays
Description Description:
Version 0.3-5
Date 2012-08-20
Author Ernest Kwan and Michael Friendly
Maintainer Michael Friendly <friendly@yorku.ca>
Depends grid
Suggests lattice, corrgram, perturb, car, vcd, abind
License GPL
LazyLoad yes
LazyData yes
Repository CRAN
Repository/R-Forge/Project tableplot
Repository/R-Forge/Revision 14
Date/Publication 2012-11-03 07:06:50
NeedsCompilation no

R topics documented:

 tableplot-package .. 2
cellgram ... 3
compare ... 4
congruence.array ... 5
Linehan ... 6
make.specs .. 7
make.specs0 .. 8
NEO ... 10
tableplot ... 12
tableplot.colldiag ... 14
utility ... 16
Description

A tableplot (Kwan, 2008) is designed as a semi-graphic display in the form of a table with numeric values, but supplemented by symbols with size proportional to cell value(s), and with other visual attributes (shape, color fill, background fill, etc.) that can be used to encode other information essential to direct visual understanding. Three-way arrays, where the last dimension corresponds to levels of a factor for which the first two dimensions are to be compared are handled by superimposing symbols.

The general graphic method was first designed as a visualization method of for exploratory and confirmatory factor analysis results (Kwan, 2008), allowing easy graphic comparison of alternative solutions, rotations, etc. Friendly & Kwan (2009) use this form for a new display of collinearity diagnostics, and Friendly & Kwan (2011) discuss the use of tableplots in a debate on the roles of tables and graphs in statistical presentation.

Details

<table>
<thead>
<tr>
<th>Package: tableplot</th>
<th>Type: Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version: 0.3-5</td>
<td>Date: 2012-08-20</td>
</tr>
<tr>
<td>License: GPL</td>
<td>LazyLoad: yes</td>
</tr>
</tbody>
</table>

The main function is `tableplot`. `tableplot.colldiag` is provided for collinearity diagnostics (Friendly & Kwan, 2009). In future releases, tableplot methods will be provided for other specialized tables.

Author(s)

Ernest Kwan and Michael Friendly

Maintainer: Michael Friendly <friendly@yorku.ca>

References

cellgram

See Also
tableplot, tableplot.colldiag
corrgram for corrgrams of correlation matrices
balloonplot for balloonplots of two-way tables

Examples

```r
# See: demo(psych9)

library(psych)

# Draw one cell in a tableplot

cellgram(cell = 0, shape = "circle", shape.col = "black", shape.lty = 1, shape.neg = 0, shape.col.neg = "red", scale.max = 3)
```

description

Draws a graphic representing one or more values for one cell in a tableplot using shapes whose size is proportional to the cell values.

Usage

cellgram(cell, shape = 0, shape.col = "black", shape.lty = 1, shape.neg = 0, shape.col.neg = "red", scale.max = 3, cell.fill = "grey", back.fill = "grey", label.size = 4, label.col = "grey", ref.lines = TRUE, ref.col = "grey", frame.col = "grey", frame.lwd = 1)

Arguments

cell
 Value(s) to be depicted in the table cell
shape
 Shape(s) used to encode the numerical value of cell. Any of 0("circle", 1="diamond", 2="square", 3="cross")
shape.col
 Outline color(s) for the shape(s)
shape.lty
 Outline color(s) for the shape(s)
shape.neg
 Shape(s) used to encode negative values in cell. Any of 0("circle", 1="diamond", 2="square", 3="cross")
shape.col.neg
 Shape(s) used to encode negative values in cell. Any of 0("circle", 1="diamond", 2="square", 3="cross")
shape.lty.neg
 Shape(s) used to encode negative values in cell. Any of 0("circle", 1="diamond", 2="square", 3="cross")
cell.fill
 inside color of ismallestl shape in a cell
back.fill
 background color of cell
label.size
 how many cell values will be printed; max is 4
label.col
 color of cell label(s)
ref.lines
 whether to draw ref lines or not
ref.col
 color of reference lines
scale.max
 Width of line used to draw the shape(s)
frame.col
 color of frame around cell
frame.lwd
 line width of frame around cell
compare

Value

No value is returned

Author(s)

Ernest Kwan

See Also

tableplot

compare
Calculate factor comparison statistics

Description

Function to facilitate the comparison of two or more factor patterns stored as a 3-dimensional array. If only two patterns, a matrix of differences is calculated. If three or more patterns, a matrix of standard deviations is calculated.

Usage

```r
compare(X)
```

Arguments

- `X` A 3 dimensional array, where the last dimension corresponds to different studies or factor solutions.

Value

A matrix comparing the factor solutions

Author(s)

Ernest Kwan

See Also

congruence.coef
congruence.array

congruence.array

Congruence coefficients for a 3-way array

Description

Calculates congruence coefficients (or some other statistic) for the rows and columns of a three-way array over the last dimension (layers) of the array.

Typically, each layer of the array gives factor or component loadings for a different sample or rotation.

Usage

```r
congruence.array(X, FUN = congruence.coef, stat.name = "phi", round = FALSE, scale = 1, ref = "last")
```

Arguments

- **X**: A three-dimensional array
- **FUN**: A function of two vector arguments, returning a single number
- **stat.name**: Name for the statistic calculated
- **round**: If TRUE, round the scaled array to the nearest integer. If numeric, the the scaled array is rounded to the given number of decimal places.
- **scale**: Multiplier for the array returned
- **ref**: Reference (baseline) level of the third dimension of X

Value

An array with one more row and column than X and the same number of layers, containing the calculated statistic in the last row and column.

Author(s)

Michael Friendly

See Also

- `congruence.coef`

Examples

```r
NEO.sm <- transpose(NEO[1:12,])
congruence.array(NEO.sm, scale=100, round=TRUE)

congruence.array(NEO.sm, FUN=function(a,b) max(abs(a-b)), stat.name="max.diff", round=2)
```
Linehan

Factor patterns for two samples from Linehan et al. (2006)

Description

Factor patterns for two samples from Linehan et al. (2006). There are 13 items, 4 factors and two samples, giving a 13 x 4 x 2 array.

Usage

data(Linehan)

Format

The format is:

num [1:13, 1:4, 1:2] 0.864 0.851 0.829 0.803 0.318 -0.218 -0.191 0.146 0.108 -0.154 ...
- attr(*, “dimnames”) = list of 3
 ..$: NULL
 ..$: NULL

Source

Examples

data(Linehan)

Linehan samples superimposed

tableplot(
 values = round(Linehan*100),
 assign.sets = matrix(1,13,4),
 cell.specs=list(list(0,”grey50″,1,1,”red”,1,”white”,”grey90″,2,.7,”black”,FALSE,”black”,99)),
 left.space=8, top.space=8)

Vectorized arguments
Use color to distinguish samples

tableplot(
 values = round(Linehan*100),
 assign.sets = matrix(1,13,4),
 cell.specs=list(list(0,c(“black”,”blue”),1,1,c(“black”,”blue”),1,”white”,”grey80″,2,.7,”black”,FALSE,”black”,99))
)
Construct cell specifications for a tableplot

Description

Construct one or more sets of cell specifications for a tableplot, using the arguments to `cellgram`, to be used as the `assign_sets` argument in a tableplot.

Usage

```r
make.s specs(n = NULL, as.data.frame = FALSE, subset, ...)
```

Arguments

- `n`
 If specified, determines the number of cell specifications generated. Otherwise, the maximum length of any of the `dots` argument.
as.data.frame If TRUE, returns the result as a data.frame. Mainly for viewing the results in an easier way.

subset A list of names of the arguments to cellgram to be included in the result. Mainly used for showing simplified examples.

... Arguments to cellgram, each given as a single element or a vector. Each argument is replicated to the length of the longest one.

Details

The function uses formals(cellgram)[-1] to retrieve the names of arguments and default values that can be included in assign.sets.

Value

Unless as.data.frame is TRUE, returns a list of lists of arguments to cellgram that can be used as the assign.sets argument of tableplot.

Author(s)

Michael Friendly

See Also

cellgram

Examples

generate 4 sets of cell specifications
specs <- make.specs0(
 shape=c(0, 0, 0, 2), # circles and squares
 cell.fill=c("red", "blue", "green", "grey40"),
 back.fill="white",
 scale.max=100
)

make.specs0 Construct a set of cell specifications for a tableplot

Description

Construct a set of cell specifications for a tableplot

Usage

make.specs0(n = NULL, as.data.frame = FALSE, shape = 0, shape.col = "black", shape.lty = 1, shape.neg = NULL, shape.lwd = 1, cell.fill = "white", back.fill = "white", label = 0, label.size = 0.7, label.col = "black", ref.lines = 0, ref.col = "gray", ref.lty = 2, ref.lwd = 1, ...)
Arguments

- **n**: Number of cell specifications to generate. If not specified, the length of the longest cellgram argument is used.

Details

This function is replaced by `make.specs` and will be removed.

Author(s)

Michael Friendly

See Also

`cellgram`
Description

Factor solutions for the "Big 5" dimensions of personality determined using the Revised NEO Personality Inventory (NEO PI-R; Costa & McCrae, 1992). The five dimensions are measured by 240 items grouped into 30 sub-scales (“facets”), with six facets measuring each of the five dimensions.

NEO.n is from the normative sample of Costa & McCrae, 1992. NEO.s is from a cross-cultural Shona-speaking sample from Zimbabwe (Piedmont et al., 2002).

Usage

data(NEO.n)
data(NEO.s)
data(NEO)

Format

For NEO.n:

The format is:

num [1:30, 1:5] 0.81 0.63 0.8 0.73 0.49 0.7 -0.12 -0.18 -0.32 0.04 ...
- attr(*, "dimnames")=List of 2
 ..$: chr [1:30] "N1" "N2" "N3" "N4" ...
 ..$: chr [1:5] "N" "E" "O" "A" ...

For NEO.s:

The format is:

num [1:30, 1:5] 0.66 0.53 0.6 0.58 0.58 0.57 -0.24 -0.14 -0.51 -0.15 ...
- attr(*, "dimnames")=List of 2
 ..$: chr [1:30] "N1" "N2" "N3" "N4" ...
 ..$: chr [1:5] "N" "E" "O" "A" ...

The NEO data is the three-way array combining NEO.n and NEO.s: The format is:

num [1:30, 1:5, 1:2] 0.81 0.63 0.8 0.73 0.49 0.7 -0.12 -0.18 -0.32 0.04 ...
- attr(*, "dimnames")=List of 3
 ..$: chr [1:30] "N1" "N2" "N3" "N4" ...
 ..$: chr [1:5] "N" "E" "O" "A" ...
 ..$: chr [1:2] "Normative" "Shona"
Source

References

Examples

data NEO.n; data NEO.s

Examples from Kwan et al., 2009

Plot of Normative patter, first 12 facets:
tableplot(
values = round(100*t NEO.n[1:12,]),
label.size = 1.5,
cell.specs = list(
list(0,"blue",1,"red",1,"white","grey90",1,1.5,"grey50",FALSE,"grey40",100)),
v.parts = c(6,6),
gap = 3,
left.space = 15,
top.space = 15,
assign.sets = matrix(1,1,12))

facnames <- c("N","E","O","A","C")
itmnames <- as.vector(t(outer(facnames,1:6,paste,sep="")))

Put the patterns together:
neopir <- array(NA, c(6,31,2))
neopir[1:5,1:30,1] <- t(NEO.n) # Normative
neopir[1:5,1:30,2] <- t(NEO.s) # Shona

Calculate congruence coefficients for variables:
for (j in 1:30){
neopir[6,j,] <- round(congruence.coef(neopir[1:5,j,1],neopir[1:5,j,2]),2)
}

Calculate congruence coefficients for factors:
for (l in 1:5){
neopir[1,l,] <- round(congruence.coef(neopir[1:5,1:30,1],neopir[1:5,1:30,2]),2)
}

Plug in the total congruence coefficient:
neopir[6,31,] <- 0.89
Get rid of decimals:
neopir <- round(neopir * 100)

dimnames(neopir) <- list(c(facnames, "phi"), c(itmnames, "phi"), c("Normative", "Shona"))

Plot of Normative and Shona, superimposed and augmented:
B[6,] <- matrix(1,6,31)
B[,31] <- 2

tableplot(
 values = neopir,
 label.size = 0.8,
 cell.specs=list(
 list(0,"blue",1,1,"red",1,"white","grey95",2,0.6,"grey50",FALSE,"grey40",100),
 list(0,"blue",1,1,"red",1,"yellow","grey60",1,0.6,"grey10",FALSE,"grey40",100)),
 v.parts = c(6,6,6,6,6,1),
 h.parts = c(5,1),
 gap = 1,
 left.space=8,
 assign.sets = B)

Description

A tableplot (Kwan, 2008) is designed as a semi-graphic display in the form of a table with numeric values, but supplemented by symbols with size proportional to cell value(s), and with other visual attributes (shape, color fill, background fill, etc.) that can be used to encode other information essential to direct visual understanding. Three-way arrays, where the last dimension corresponds to levels of a factor for which the first two dimensions are to be compared are handled by superimposing symbols.

Usage

```r
tableplot(values, ...)
```

Default S3 method:
```r
tableplot(values, assign.sets, cell.specs,
  v.parts = 0, h.parts = 0, gap = 2, text.m = 0, empty.text.size = 0.8, empty.text.col = "grey30",
  title = NULL, table.label = TRUE, label.size = 0.8, side.rot = 0, left.space = 10, top.space = 10+10*(5
```

Arguments

- **values** A matrix or 3-dimensional array of values to be displayed in a tableplot
- **...** Arguments passed down to `tableplot.default`
assign.sets Matrix of specification assignments, of the same size as the first two dimensions of values. Entries refer to the sub-lists of cell.specs. Defaults to matrix(1, dim(values)[1], dim(values)[2])

cell.specs List of lists; each list is one specification for the arguments to cellgram. cell.specs[k] is used for all table cells where assign.sets[i,j] = k. See make.specs for a simple way to construct the cell.specs argument.
v.parts An integer vector giving the number of columns in two or more partitions of the table. If provided, sum must equal number of columns.
h.parts An integer vector giving the number of rows in two or more partitions of the table. If provided, sum must equal number of columns.
gap Width of the gap in each partition, if partitions are requested by v.parts and/or h.parts
text.m Matrix of text for insertion into text-only, empty cell(s)
empty.text.size Text size for text-only cells
empty.text.col Text color for text-only cells
title Main title
table.label Logical value: whether to print row/column labels.
label.size Character size for labels
side.rot Degree of rotation (positive for counter-clockwise)
left.space Space between left of tableplot and left edge of drawing region, in mm.
top.space Space between top of tableplot and top edge of drawing region, in mm.

Value
None. Used for its side effect

Author(s)
Ernest Kwan

References

See Also
cellgram, make.specs
Examples

Factor pattern matrix from Nisenbaum et al. (2004)
Nisenbaum <- matrix(c(
 93, 14, -14, -3,
 87, 17, -13, -12,
 39, -15, 15, 29,
 25, 10, 21, 41,
 36, -10, 8, 35,
 5, 79, -1, 0,
 10, 72, -11, 16,
 8, 80, 12, -7,
 23, 47, 6, 8,
-28, 27, 5, 78,
 6, 33, -22, 37,
-10, 21, -10, 68,
-19, -1, 93, 11,
-11, -8, 86, 3,
 2, -1, 53, 3,
 10, 27, 51, -11,
 21, 28, 50, -12,
 18, 10, 11, 23,
 0, 25, 15, 20,
 15, -24, 8, 54,
-13, 31, 14, 20), 21, 4, byrow=TRUE)
rownames(Nisenbaum) = paste("F", 1:4, sep="")
colnames(Nisenbaum) = paste("F", 1:4, sep="")
tableplot(
 values = Nisenbaum,
 cell.specs = list(list(0,"grey50",1,0,"red",1,"white","grey80",1,0.7,"black",FALSE,"black",93)),
 assign.sets = matrix(1,21,4)
)

Description

Produces a tableplot of collinearity diagnostics for a linear regression model (Friendly & Kwan, 2009), showing condition indices and variance proportions for the quantitative predictors. The goal is to highlight the variables involved in one or more nearly collinear relations among the predictors.

The default scheme is to show the column of condition indices at the left, using color to indicate danger (red), warning (yellow) and OK (green) with colors designed to reproduce as ordered in B/W. The variance proportions for the predictors are shown in a block at the right, using white, pink, red for small, medium and large values.
Usage

```r
## S3 method for class 'colldiag'
tableplot(values, cell.specs,
prop.col = c("white", "pink", "red"),
cond.col = c("#A8F48D", 
#DDAB3E", "red"),
cond.max = 100,
prop.breaks = c(0, 20, 50, 100),
cond.breaks = c(0, 5, 10, 1000),
show.rows = nvar:1, ...)
```

Arguments

- `values`: A `colldiag` object, such as calculated by `colldiag`
- `cell.specs`: Specifications for `cellgram` arguments, used only to override those calculated internally from the following arguments.
- `prop.col`: A vector of colors used to display the values of the variance proportions.
- `cond.col`: A vector of colors used to display the values of the condition indices.
- `cond.max`: Maximum value for a condition index displayed.
- `prop.breaks`: Breaks for the variance proportions.
- `cond.breaks`: Breaks for the condition indices.
- `show.rows`: Vector of indices of the rows of the `colldiag` object to be displayed in the `tableplot`. By default, all rows are shown, in reverse order, with the highest condition indices at the top.
- `...`: Other arguments to pass down to `tableplot.default`

Details

The values of variance proportions are multiplied by 100 and rounded.

Value

None. Used for its side-effect.

Author(s)

Michael Friendly

References

See Also

`colldiag` for calculation of collinearity diagnostics
Examples

```r
# Baseball data example, from Friendly & Kwan (2009)
if (require(vcd) && require(perturb)) {
  # model, with transformed variables
  Baseball$logsal <- log(Baseball$sal87)
  Baseball$years7 <- pmin(Baseball$years, 7)

  base.mod <- lm(logsal ~ years+atbat+hits+homeruns+runs+rbi+walks, data=Baseball)
  if (require(car)) {
    # examine variance inflation factors
    vif(base.mod)
  }
  # corresponds to SAS: / collinoint option
  cd <- colldiag(base.mod, add.intercept=FALSE, center=TRUE)
  # simplified display
  print(cd, fuzz=.3)
}
}
```

utility

Utility functions for tableplots

Description

Utility functions for producing tableplots

Usage

```r
congruence.coef(a, b)
cg_cf(a, b)
identity.coef(a, b)
id.cf(a, b)
transpose(x)
```

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>A vector of factor or component loadings</td>
</tr>
<tr>
<td>b</td>
<td>A vector of factor or component loadings</td>
</tr>
<tr>
<td>x</td>
<td>A matrix or array of 3 dimensions.</td>
</tr>
</tbody>
</table>

Details

Congruence coefficients (Burt, 1948; Wrigley & Newhaus, 1955) are used to assess the similarity of two rows or columns in a factor pattern....

transpose transposes an array of 2 or 3 dimensions, where, in the 3D case, transposition is carried out only on the first two dimensions. Useful to transpose the data for a tableplot.
Author(s)
Ernest Kwan

References

Index

*Topic** aplot
 cellgram, 3
*Topic** datasets
 Linehan, 6
 NEO, 10
*Topic** hplot
 tableplot, 12
 tableplot.colldiag, 14
*Topic** package
 tableplot-package, 2
*Topic** utilities
 compare, 4
 congruence.array, 5
 make.specs, 7
 make.specs0, 8
 utility, 16

balloonplot, 3

cellgram, 3, 8, 9, 13
 cg.cf (utility), 16
colldiag, 15
cmpare, 4
congruence.array, 5
congruence.coef, 4, 5
congruence.coef (utility), 16
corrgram, 3

id.cf (utility), 16
identity.coef (utility), 16

Linehan, 6

make.specs, 7, 13
make.specs0, 8

NEO, 10

tableplot, 2–4, 12
tableplot-package, 2
tableplot.colldiag, 2, 3, 14