Package ‘tdthap’

June 30, 2018

Version 1.1-9
Date 2018-6-30
Title TDT Tests for Extended Haplotypes
Author David Clayton
Maintainer Jing Hua Zhao <jinghuazhao@hotmail.com>
Depends R (>= 1.5.0)
License Artistic-2.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-06-30 21:10:20 UTC

R topics documented:

get.similarity .. 2
hap.transmit .. 2
set.similarity .. 3
tdt.quad ... 4
tdt.rr ... 5
tdt.select ... 7

Index 8
get.similarity
Interrogate similarity function for Geary-Moran TDT tests

Description
N/A

Usage
get.similarity(nloci=1)

Arguments
nloci The number of loci.

See Also
tdt.quad, set.similarity

hap.transmit Build parental haplotypes in nuclear families

Description
This version only computes parental haplotypes in so far as they can be derived with complete certainty. Any locus with is uncertain in the final haplotype is coded as zero.

Usage
hap.transmit(pedfile, markers=1:((ncol(pedfile) - 6)/2),
 multiple.cases=0, use.affected=TRUE)

Arguments
pedfile The input dataframe. The first six columns contain the pedigree id, the member id, the two parental id’s, the sex, and the affection status. Subsequent fields are in pairs and represent alleles at marker loci. All variables must take integer values, with zero being taken as “missing”.
markers Integer array indicating markers to be used and their order.
multiple.cases The action to be taken if multiple affected offspring in any pedigree. Options are (0) include all, (1) include all, but whole family is duplicated and only one offspring is treated as affected in each repeated family, and (2) use only first affected offspring.
use.affected If TRUE, data from affected offspring is used when imputing any missing parental data. Otherwise it is ignored.
Value

A dataframe with one row for each affected offspring. The first four columns identify the offspring by pedigree id, member id, and parental id’s. The next block of columns hold the transmitted paternal haplotype. Following blocks contain the untransmitted paternal haplotype and maternal transmitted and untransmitted haplotypes.

References

See Also

tdt.select, tdt.rr, tdt.quad

Examples

Not run:
Read a pedfile (which includes the variable names in the top line)
and build haplotypes using the markers which appear third, second, and
first in the pedfile.

filespec <- system.file("tests/test.ped", package="tdthap")
ped <- read.table(filespec)
haps <- hap.transmit(ped, markers=c(3,2,1))

End(Not run)
Arguments

- `nloci`: The number of loci.
- `spacing`: A numeric array of length (nloci+1) giving marker spacings and "off-end" distances.
- `focus`: An integer in the range 1:nloci indicating the "focus" for the similarity function.
- `power`: The power to which the shared haplotype length is raised.

Value

A list of the values loaded.

Side Effects

Sets constants accessed by `tdt.quad()` when calculating Geary-Moran type statistics.

References

See Also

- `tdtNquad`, `getNsimilarity`

Examples

```r
## not run:
# To do a Geary-Moran test on a 10 marker haplotype
gaps <- c(0, 50, 60, 80, 20, 30, 50, 40, 50, 100, 0)
setNsimilarity(nloci=10, spacing=gaps, power=0.5)
test <- tdtNquad(hapNuseL funct=t)
## end(not run)
```

Usage

```r
tdt.quad(hap, nsim=5000, funct=FALSE, keep=TRUE, seeds=c(0, 0, 0))
```
Arguments

- **hap**: A list containing the transmitted and untransmitted haplotypes. This would normally be computed using `tdt.select`.
- **nsim**: The number of Monte Carlo simulations from the null hypothesis.
- **funct**: If `T`, a similarity function is used and the test is a Geary-Moran test. Otherwise, the Pearsonian test, \(\text{Sum} \left(O - E \right)^2 / E \), is used.
- **keep**: If TRUE, all simulated values of the test statistic are kept. Otherwise only the realised value of the test statistic and the p-value are returned.
- **seeds**: Three numbers to seed the random number generator. The default is to use a different three random numbers each time.

Value

A list containing: the number of distinct haplotypes (`n.hap`), the number of informative transmissions (`n.trans`), the test statistic (`test`), the p-value (`p.value`) and, optionally, all the simulated values of the test statistic under the null hypothesis (`sim`).

References

See Also

- `hap.transmit`, `tdt.select`, `tdt.rr`, `set.similarity`, `get.similarity`

Examples

```r
## Not run:
# Do a Pearsonian test using 10000 simulations and summarise the distribution
# of the statistic under the null hypothesis

test <- tdt.quad(hap.use, nsim=10000, keep=T)
test
summary(test$sim)

## End(Not run)
```
Description

The p-value is the conventional "exact" test based on the binomial distribution of transmissions. The estimated relative risks use a Bayesian method, recommended because of the multiplicity problem. The prior is a beta distribution of the second kind, defined by two "degrees of freedom" parameters. Note that the prior mean is prior.df[1]/prior.df[2] and that Bayes estimates based on small numbers of transmissions are pulled in towards this. A "realistic" choice of these parameters is recommended, and to aid this, the function returns credible intervals using the prior alone as well as the a posteriori interval for each haplotype.

Usage

tdt.rr(hap, prior.df=c(0.5, 0.5), prob=c(0.05, 0.95))

Arguments

hap A list containing the transmitted and untransmitted haplotypes. This would normally be computed using tdt.select.
prior.df a vector of length two containing the degree of freedom parameters for the prior distribution of the haplotype relative risk - a beta distribution of the second kind.
prob The probability levels for Bayesian credibility intervals for the haplotype relative risks.

Value

A matrix containing the numbers of transmitted and untransmitted haplotypes, the (binomial) p-values, the Bayes estimates of the haplotype relative risks, and the lower and upper bounds of the credible interval. The prior estimate and credible interval is also shown.

References

See Also

hap.transmit, tdt.select, tdt.quad

Examples

Not run:
Select the sub-haplotype made up from the first two markers and
print tables of TDT tests and haplotype realtaive risks

hap.use <- tdt.select(haps, markers=1:2)
rr <- tdt.rr(hap.use)
rr

End(Not run)
tdt.select

Select informative transmissions of sub-haplotypes for the TDT test

Description

This function is just a data handling intermediary between `hap.transmit`, which computes haplotypes, and `tdt.quad` and `tdt.rr` which do TDT tests.

Usage

`tdt.select(hap.data, markers=1:(ncol(hap.data) - 4)/4), complete=TRUE)`

Arguments

- `hap.data` The input dataframe. This will usually have been created by `hap.transmit`.
- `markers` An integer array indicating which loci make up the relevant part of the haplotype.
- `complete` If TRUE, only "complete" haplotypes are used (ie no zero's will be included).

Value

A list of two arrays of class "factor". The first (trans) contains transmitted haplotypes and the second (untrans) contains untransmitted haplotypes. Rownames identify the transmission in terms of pedigree id, offspring id, father’s id, mother’s id, and whether it is a paternal transmission ("f") or a maternal transmission ("m").

References

See Also

`hap.transmit, tdt.rr, tdt.quad`

Examples

```r
## Not run:
# Select the sub-haplotype made up from the first two markers and print
# tables of frequencies of transmitted and untransmitted haplotypes

hap.use <- tdt.select(haps, markers=1:2)
table(hap.use$trans)
table(hap.use$untrans)
## End(Not run)
```
Index

*Topic htest
 get.similarity, 2
 hap.transmit, 2
 set.similarity, 3
 tdt.quad, 4
 tdt.rr, 5
 tdt.select, 7

g.get.similarity, 2, 4, 5
hap.transmit, 2, 5–7
set.similarity, 2, 3, 5
tdt.quad, 2–4, 4, 6, 7
tdt.rr, 3, 5, 5, 7
tdt.select, 3, 5, 6, 7