Package ‘tfer’

July 15, 2020

Type Package
Title Forensic Glass Transfer Probabilities
Version 1.3
Date 2020-07-14
Author James Curran and Ting Yu Huang
Maintainer James Curran <j.curran@auckland.ac.nz>
Description Statistical interpretation of forensic glass transfer (Simulation of the probability distribution of recovered glass fragments).
License GPL-2
LazyLoad yes
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-07-15 09:40:02 UTC

R topics documented:

getParam .. 2
getValues .. 3
plot.tfer .. 4
print.transfer .. 4
summary.transfer ... 5
tprob .. 5
transfer .. 6

Index 10
getParams

Extract Transfer and Persistence Parameters

Description

Displays input parameters and arguments passed to `transfer`

Usage

```r
getParams(tferObj)
```

Arguments

- `tferObj` An object of class `transfer`

Details

`getParams` is one of the two accessor functions for a `transfer` object.

Value

`getParams` returns a list of input parameters and their corresponding values.

Author(s)

TingYu Huang

See Also

- `transfer`

Examples

```r
library(tfer)
y = transfer()
getParams(y)
```
getValues

Extract Transfer Values

getValues is a accessor function which returns the number of recovered glass fragments generated by transfer.

Description

Extract Transfer Values

getValues is a accessor function which returns the number of recovered glass fragments generated by transfer.

Usage

getValues(tferObj)

Arguments

tferObj An object of class tfer

Value

values returns a numeric vector of random variates.

Author(s)

TingYu Huang and James Curran

See Also

transfer

Examples

library(tfer)
y = transfer();
getValues(y)
plot.tfer

plot method for objects of transfer class

Description

plot method for objects of transfer class

Usage

```r
## S3 method for class 'tfer'
plot(
  x,
  ptype = c("density", "freq", "hist"),
  xlab = "n",
  main = "",
  col = "red",
  ...
)
```

Arguments

- **x**: an object of class transfer
- **ptype**: one of "density", "freq", or "hist". "density" will give a barplot with probability on the y-axis, "freq" will give a barplot with frequencies (counts) on the y-axis, and "hist" will produce a histogram with frequency (counts) on the y-axis. One-letter versions will also work, i.e. "d", "f" and "h". The original 0, 1, 2 will also work, but this usage is deprecated and will produce a warning.
- **xlab**: the x-axis label, by default "n"
- **main**: the plot title, empty by default
- **col**: the colour of the bars in the plot, by default "red"
- **...**: any other arguments to be passed to barplot or histogram

print.transfer

print method for transfer objects

Description

Prints a summary of the simulation input parameters

Usage

```r
## S3 method for class 'transfer'
print(x, ...)
```
summary.transfer

Arguments

- `x` an object of class `transfer`
- `...` included for consistency but not used

Description

Prints a summary of the simulation input parameters

Usage

```r
## S3 method for class 'transfer'
summary(object, ...)
```

Arguments

- `object` an object of class `transfer`
- `...` extra arguments passed to `summary.default`

Value

A list with three elements is returned invisibly:

- `parameters` list containing all the simulation parameters
- `values` a numeric vector of the simulated values
- `probability` a named numeric vector giving the probability of recovering 0, 1, 2, .. fragments

tprob

Return a table of T probabilities for all observed values

Description

Return a table of T probabilities for all observed values

Usage

`tprob(tferObj, x)`
Arguments

- `tferObj`: an object of class `transfer`
- `x`: an optional set of values which specify the desired T-terms. E.g. `x = c(0,1,2)` would return T0, T1, and T2 and so on. Negative values of x will cause the function to stop. Values of x which exceed those observed will be assigned a value of zero. The return values will be returned in ascending order regardless of the order of x (although I suppose I could preserve the order if someone really cares).

Value

A table of T probabilities, giving the probability that x fragments were recovered given they were transferred and persisted according to the other inputs of the model.

Examples

```r
set.seed(123)
y = transfer()
tprob(y)
tprob(y, 55:120) ## max observed value is 113
```

transfer

Glass Transfer, Persistence and Recovery Probabilities

Description

Construct a transfer object to simulate the number of glass fragments recovered given the conditions set by the user.

Usage

```r
transfer(
  N = 10000,
  d = 0.5,
  deffect = TRUE,
  lambda = 120,
  Q = 0.05,
  l0 = 0.8,
  u0 = 0.9,
  lstar0 = 0.1,
  ustar0 = 0.15,
  lj = 0.45,
  uj = 0.7,
  lstarj = 0.05,
  ustarj = 0.1,
)```
lR = 0.5,
uR = 0.7,
l_t = 1,
u_t = 2,
r = 0.5,
timeDist = c("negbin", "cnegbin", "uniform"),
loop = FALSE)

Arguments

N  Simulation size

d  The breaker’s distance from the window

defect  Distance effect. defect = TRUE when distance effect exists. Otherwise defect = FALSE.

lambda  The average number of glass fragments transferred to the breaker’s clothing.

Q  Proportion of high persistence fragments.

l0  Lower bound on the percentage of fragments lost in the first hour

u0  Upper bound on the percentage of fragments lost in the first hour

lstar0  Lower bound on the percentage of high persistence fragments lost in the first hour

ustar0  Upper bound on the percentage of high persistence fragments lost in the first hour

l_j  Lower bound on the percentage of fragments lost in the j’th hour

u_j  Upper bound on the percentage of fragments lost in the j’th hour

lstar_j  Lower bound on the percentage of high persistence fragments lost in the j’th hour

ustar_j  Upper bound on the percentage of high persistence fragments lost in the j’th hour

lR  Lower bound on the percentage of fragments expected to be detected in the lab

uR  Upper bound on the percentage of fragments expected to be detected in the lab

lt  Lower bound on time between commission of crime and apprehension of suspect

ut  Upper bound on time between commission of crime and apprehension of suspect

r  Probability r in ti ~ NegBinom(t, r)

timeDist  the distribution for the random amount of time between the commission of the crime and the apprehension of the suspect. There are three choices "negbin", "cnegbin", and "uniform". Before talking about these it should be noted that if lt is equal to ut - then there is no randomness in this calculation. If lt does not equal ut, then the average of these two values is used in the two negative binomial options: "negbin" and "cnegbin". The difference between them is that "cnegbin" is a constrained negative binomial where the allowable times are constrained to be between lt and ut. If "uniform" is selected, then a uniformly distributed random time between lt and ut is used in each iteration.
loop

if TRUE an element by element version of the simulation is used, if FALSE then a
(mostly) vectorised element version of the simulation is used. The results from
the two methods appear to be almost identical - they won’t be the same even with
the same seed because of the way the random variates are generated. I (James)
believe the vectorised version is faster and better. There was also a small mistake
which has been corrected in that the initial set of persistent fragments was not
being

Value

a list containing:

results The simulated values of recovered glass fragments

paramList Input parameters

The returned object has S3 class types tfer and transfer for backwards compatibility

Author(s)

James Curran and TingYu Huang

References

Boca Raton, FL: CRC Press.

Assessing transfer probabilities in a Bayesian interpretation of forensic glass evidence. Science &

Examples

library(tfer)

## create a transfer object using default arguments
y = transfer()

## probability table
probs = tprob(y)

## extract the probabilities of recovering 8 to 15
## glass fragments given the user-specified arguments
tprob(y, 8:15)

## produce a summary table for a transfer object
summary(y)

## barplot of probabilities (default)
plot(y)
plot(y)
## barplot of transfer frequencies
plot(y, ptype = "f")

## histogram
plot(y, ptype = "h")
Index

* methods
  print.transfer, 4
  summary.transfer, 5
* print
  print.transfer, 4
* summary
  summary.transfer, 5

getParams, 2
getValues, 3

plot.tfer, 4
print.transfer, 4

summary.default, 5
summary.transfer, 5

tprob, 5
transfer, 2, 3, 6