Package ‘tiger’

February 20, 2015

Type Package
Title Time series of Grouped ERrors
Version 0.2.3.1
Date 2013-08-09
Author Dominik Reusser
Maintainer Dominik Reusser <reusser@pik-potsdam.de>
Description Temporally resolved groups of typical differences (errors) between two time series are determined and visualized
Depends R (>= 2.10.0), e1071, hexbin, qualV, klaR, som
Imports lattice
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2014-08-10 19:06:53

R topics documented:

- tiger-package ... 2
- change.order.clusters ... 3
- color.factor ... 4
- correlated ... 4
- count.diff.direction.error .. 6
- diagnostic ... 7
- eD ... 9
- example.peaks .. 10
- include.others .. 10
- k_hyd ... 11
- k_rel ... 12
- lagtime ... 13
- nashS ... 14
- plots .. 15
- synth.peak.error .. 18
Description

About fifty performance measures are calculated for a gliding window, comparing two time series. The resulting matrix is clustered, such that each time window can be assigned to an error type cluster. The mean performance measures for each cluster can be used to give meaning to each cluster. Additionally, synthetic peaks are used to better characterize the clusters. The package provides functions to calculate and visualize these results.

Details

Use tiger to perform the calculations. See the package vignette for an example, how to perform calculations and how to evaluate information.

Author(s)

Dominik Reusser

Maintainer: Dominik Reusser <dreusser@uni-potsdam.de>

References

Examples

```r
data(tiger.example)
modelled <- tiger.single$modelled
measured <- tiger.single$measured
peaks <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5)
## Not run: result2 <- tiger(modelled=modelled, measured=measured, window.size=240, synthetic.errors=peaks)
## End(Not run)
```
change.order.clusters

Description
Changes the cluster numbering in a fuzzy clustering object.

Usage
change.order.clusters(clustering, new.order)

Arguments
- clustering: Object returned from cmeans
- new.order: Vector with new cluster numbering.

Details
Cluster 1 from the old object is assigned the number stored in the first position in new.order, Cluster 2 the number on the second position and so on.

Value
Identical object as clustering except the cluster numbering is changed

Author(s)
Dominik Reusser

References

See Also
cmeans for the fuzzy clustering

Examples
```r
data(tiger.example)
new.order <- c(6,3,2,5,4,1)
cmeans.result <- tiger.single$cluster.assignment[[6]]
str(cmeans.result)
cmeans.result2 <- change.order.clusters(cmeans.result, new.order)
```
color.factor
Create colors with intensity according to the magnitude of a value

Description
Create colors with intensity according to the magnitude of a value

Usage
color.factor(color, value, max)

Arguments
color The base color(s) to use
value A vector of values
max The maximum value represented by full intensity

Value
A vector of colors, one entry for each value

Author(s)
Dominik Reusser

Examples
```r
data <- 1:10
cols=color.factor("red", data, max=10)
plot(data, col=cols)

cols=color.factor(c("red","green","blue"), data, max=10)
plot(data, col=cols)
```

correlated
Calculate correlation structure

Description
Calculate the correlation structure between multiple performance measures

Usage
correlated(result, limit = 0.85, plot.scatter = FALSE, keep = NA)
correl(measures, limit = 0.85, plot.scatter = FALSE, keep = NA)
correlated

Arguments

result: object returned from `tiger`
measures: data.frame for which to determine correlation structure
limit: Limit for absolute correlation, above which data is considered to be correlated
plot.scatter: Boolean, indicating whether to show pairwise plots for correlated measures
keep: Vector with names of measures that must not be excluded because of correlation with other measures

Value

correl returns:

pairs: Matrix with indices of pairwise correlated measures
pairs.by.name: Matrix with measure names of pairwise correlated measures
possible.exclusion: List indicating which measures might be removed to end up with no strongly correlated measures. The list also indicates, which measure is correlated to the removed measures
to.drop: List of indices for measures to drop (according to previous list)
to.drop.by.name: List of measure names (of the previous list)

correlated returns a list of two correl results, one for the original performance measures and one for the transformed measures from a result from `tiger`.

Author(s)

Dominik Reusser

See Also

This method helps to reduce the amount of data to be analyzed from an evaluation using `tiger`

Examples

data(tiger.example)
correlated <- correlated(tiger.single, keep=c("CE","RMSE"))
count.diff.direction.error

Compare sign of derivatives

Description

Counts the number of elements for which two vectors show different signs in the derivative.

Usage

```r
count.diff.direction.error(x, y)
```

Arguments

- `x` First vector
- `y` Second vector

Value

```r
sum((diff(x) / diff(y))<0, na.rm=T)
```

Author(s)

Dominik Reusser

See Also

`diagnostic_dawson`

Examples

```r
# All different
count.diff.direction.error(1:10, 10:1)

# One different
count.diff.direction.error(1:10, c(1:9, 8))
```
diagnostic Calculate a number of objectives to compare time series

Description

diagnostic_dawson take two vectors (assumed to be time series) and calculates the following objective functions to compare them: correlation, Nash Sutcliffe efficiency, ratio of the integral, lagtime (maximum of the cross correlation), the number of timesteps with opposite sign of the derivative, the highest ratio between recession coefficients and the root mean square error, as well as the ones listed in Dawson 2007.

diagnostic_window calculates these measures for a part of the time series only. It is used internally by diagnostic_series takes this a step further by calculating the above measures for a gliding window along the time series and calculating additional measures. Similar to diagnostic, the function takes two vectors (assumed to be time series) and calculates a number of objectives compare them. In contrast to the more simple diagnostic, the same objectives are applied to a gliding window and a few additional objectives are calculated: the ratio of the derivatives, the ratio of the recession coefficients for each time step and the current quantile of the residuals.

Usage

diagnostic_window(position, window.size, measured, modelled, use_qualV = FALSE,
 diff.ecdf=NA)
diagnostic_series(measured, modelled, window.size, step.size = 1, integral_correction = FALSE,
 use_qualV = FALSE)
diagnostic_dawson(modelled, measured, p=NA, m=NA, additional=TRUE,
 use_qualV=FALSE, diff.ecdf=NA)

Arguments

modelled Modelled time series or array with dimension c(number_series, dim(measured))
measured Measured time series
position Index from where to start the calculation
window.size Number of time steps to include
step.size Size of the steps defining the number of scores to be calculating along the time series. For example, with a value of 5 every fifth value is included
integral_correction Boolean. If true, the ratio of the integrals is divided by the total ratio of the entire integral. This way, relative integral errors can be detected.
p The number of free parameters in each model - required to calculate AIC and BIC
m The number of data points that were used in the model calibration - required to calculate AIC and BIC
additional Boolean, indicating whether to calculate additional measures to the ones defined in Dawson 2007
use_qualV Boolean, indicating whether to calculate the additional measures defined in Jachner 2007
diff.ecdf \texttt{ecdf}-function of the bias (measured-modelled)

Details
For more details on the objectives, see the see-also-section

Value
A data frame with the described objectives

Author(s)
Dominik Reusser

References

See Also
\texttt{qualVcor, nashS, lagtime, count.diff.direction.error, k_rel}

Examples
data(example.peaks, package="tiger")

plot(reference.peak, type="l")
lines(example.peaks[1,], lty=2)

diagnostic_dawson(measured = reference.peak, modelled = example.peaks[1,])

#first half only
diagnostic_window(measured=reference.peak, modelled=example.peaks[1,],
position = 1, window.size = 45)

#gliding window for 20 time steps
diagnostic_series(measured=reference.peak, modelled=example.peaks[1,],
window.size = 20)
Euclidean Distance

Description

Calculate the euclidean distance for multiple vectors

Usage

```
eD(x, y)
```

Arguments

- **x**: matrix with first set of vectors.
- **y**: matrix with second set of vectors.

Details

x and y need the following structure to compare multiple vectors at once:

- rows contain the k vectors
- columns the n coordinates in the n-space

```
str(x) == matrix [1:k, 1:n]
```

Value

vector with the euclidean distance for each pair

Author(s)

Dominik Reusser

Examples

```
eD(1:3, 2:4)
```
example.peaks
Synthetic peak errors

Description
A number of synthetic peak errors used for testing performance measures and similar

Usage
data(example.peaks)

Format
The format for example.peaks is: num [1:12, 1:91] 0.1346 0.1346 0.1846 0.0846 0.1346 ...
The format for the reference.peak is: num [1:91] 0.135 0.134 0.134 0.134 0.134 ...

Examples
data(example.peaks)
str(example.peaks)
str(reference.peak)
plot(reference.peak, type="line")
lines(example.peaks[,1], lty=2)
diagnostic_dawson(measured = reference.peak, modelled = example.peaks[1,])
maybe str(peaks); plot(peaks) ...

include.others
Internal Function: evaluate box plot

Description
Find clusters with a comparable position on the box plot with respect to the best value. Comparable position means the median of one set of values falls within the interquartile range of the reference set of values

Usage
include.others(selected, center, stats, best = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>selected</td>
<td>index of the best value set.</td>
</tr>
<tr>
<td>center</td>
<td>where is the best value within the</td>
</tr>
<tr>
<td>stats</td>
<td>stats element of a boxplot result</td>
</tr>
<tr>
<td>best</td>
<td>are we comparing against the best set?</td>
</tr>
</tbody>
</table>
k_hyd

Value
Vector of indices for which elements are comparable

Author(s)
Dominik Reusser

See Also
boxplots

k_hyd
Hydrological recession constant

Description
This function calculates the local hydrological recession constant for each point in a time series. The function returns NA for periods with increasing discharge.

Usage
k_hyd(x)

Arguments
x
discharge time serie

Details
The function returns \(-\frac{dx}{dt} \times \frac{1}{x} \) if \(\frac{dx}{dt} \) is larger than 0 and x is not 0. For the other cases, NA is returned.

Value
Vector of recession constants.

Author(s)
Dominik Reusser

References
Blume Recession Paper

See Also
diagnostic_dawson
Examples

data(example.peaks, package="tiger")

k_hyd(reference.peak)

k_rel Mean ratio of hydrological recession constants of two discharge time series

Description

This function calculates the mean ratio between local hydrological recession constant for each point in two discharge time series.

Usage

k_rel(x, y)

Arguments

x discharge time serie
y discharge time serie

Value

A scalar with the mean ratio

Author(s)

Dominik Reusser

See Also

k_hyd, diagnostic_dawson

Examples

data(example.peaks, package="tiger")

k_rel(reference.peak, example.peaks[1,])
Description

This function calculates the lagtime between x and y, defined as the shift resulting in the maximum cross correlation.

Usage

\texttt{lagtime(x, y)}

Arguments

\begin{itemize}
\item \texttt{x} \hspace{0.5cm} Time series
\item \texttt{y} \hspace{0.5cm} Time series
\end{itemize}

Value

The lagtime as scalar. Positive if x is shifted towards later times.

Author(s)

Dominik Reusser

See Also

\texttt{ccf}, \texttt{diagnostic_dawson}

Examples

\begin{verbatim}
data(example.peaks, package="tiger")
plot(reference.peak, type="l")
lines(example.peaks[7,], lty=2)
lagtime(reference.peak, example.peaks[7,])
\end{verbatim}
Catalogue the (weighted) Nash Sutcliffe Efficiency coefficient

Description

Calculates the Nash Sutcliffe Efficiency coefficient.

Usage

\[
\text{nashS}(\text{modelled}, \text{measured}, \text{weigth} = \text{NA}) \\
\text{nashS_HF}(\text{modelled}, \text{measured}, \text{weigth} = \text{NA})
\]

Arguments

- \text{modelled} Vector with modeled data
- \text{measured} Vector with measured data
- \text{weigth} If this vector is supplied, each data point is weighted accordingly

Details

The weighting corresponds to the value in the empirical cumulative distribution function.

Value

Returns a scalar between -\(\infty\) and 1 corresponding to the agreement between measured and modeled data. 0 means the model agrees equally well as the mean value.

Author(s)

Dominik Reusser

References

http://en.wikipedia.org/wiki/Nash-Sutcliffe_efficiency_coefficient

Examples

\[
\text{ref.peak} \leftarrow \text{synth.peak}(\text{rise.factor}=2, \text{recession.const}=0.02) \\
\text{peak} \leftarrow \text{synth.peak}(\text{rise.factor}=2, \text{recession.const}=0.03) \\
\text{nashS}(\text{modelled}=\text{peak}, \text{measured}=\text{ref.peak})
\]
Evaluation plots for temporal dynamics of model performance

Description

Create various plots to understand the temporal dynamics of model performance

Usage

boxNplots(result, solution, showNmeasures = 1:numNmeasures,
 newNorder = 1:solution, showNsyntheticNpeaks = FALSE,
 syntheticNpeaksNcol = c(2:8, 2:8), showNtimestep = NA,
 showNcell = NA,
 ref = NULL, refNnewNorder = newNorder, refNsolutions =
 solution, colNbestNmatch = "black",
 clusterPalette = rainbow(solution))

errorsNinNtime(xval, result, solution, rainNdata = NULL, showNmonths
 = FALSE, newNorder = 1:solution, xNrange =
 1:length(xval), pmax = max(c(result$measured,
 result$modelled), na.rm = TRUE), data.colors =
 data.frame(measured = c("grey"), modelled =
 c("black"), rain = c("black")), clusterPalette =
 rainbow(solution), color.cutNoff = 0, fracNmax = 0.7,
 fracNmin = 0.4, grid nx = 0, legendNpos = "topleft",
 showNdata = TRUE, showNerrors = TRUE, showNdataNmodel
 = showNdata, showNdataNmeasured = showNdata, ...)

peaksNinNclusters(result, solution, newNorder = 1:solution)
peaksNonNsom(result, solution, clusterPalette=rainbow(solution),
 cellNsize = 0.9, mfrow=c(2,ceiling(nNerrors/2)),
 newNorder=1:solution)
peaksNmeasures(result, showNmeasures = 1:numNmeasures,
 syntheticNpeaksNcol = c(2:8, 2:8), mfrow = c(2, 3),
 colNbestNmatch = "black", doNout = rep(TRUE,
 length(showNmeasures)), singleNerrors = FALSE,
 showNlegend = TRUE, showNmain = TRUE, yNrange = NULL)
scatterplot(measures, showNmeasures=1:numNmeasures)
p.validityIndex(result, validityNmax)

Arguments

result object returned from tiger
measures data.frame from which to create a scatter plot. e.g. result$measures.uniform
solution number of clusters to use for further evaluations (see also validityIndex)
singleNerrors Boolean, indicating whether different synthetic errors should be combined into
 a single plot or shown in multiple plots
showNlegend Boolean, indicating whether to show the legend
show.main: Boolean, indicating whether to show performance measure names as plot title.

show.measures: vector of indices indicating for which performance measures to show the plots.

new.order: New numbering to assign to clusters. See also change.order.clusters.

show.synthetic.peaks: Show values of the synthetic peaks on top of the box plots.

synthetic.peaks.col: Colors to use for synthetic peaks.

do.out: vector of booleans indicating whether to exclude outliers when showing the plot.

cell.size: fraction of the cell square to be filled with color.

show.cell: the scores for a certain cell on the SOM can be plotted as blue line on the box plot (see examples).

x.range: Indizes of x-values to be plotted.

y.range: Range for y axis.

pmax: maximum discharge for definition of the plot range.

frac.min: minimum of the y-range covered by color bars for cluster occurence.

frac.max: maximum of the y-range covered by color bars for cluster occurence.

clusterPalette: colors to use for the clusters.

color.cut.off: Value of cluster occurence below which the color bar is set to transparent (for better readability).

legend.pos: Position of the legend.

data.colors: Color definition for rainfall and runoff.

show.timestep: timestep for which the values for the performance measures are to be plotted as black lines in the box plot.

xval: Values to be plotted on the x-axis (e.g. POSIX-date).

show.months: Boolean indicating whether to add month ticks to x axis.

mfrow: see par.

ref: Reference solution to be ploted in grey on the box plot.

ref.new.order: New numbering to assign to clusters for reference solution on the box plot.

ref.solutions: Number of clusters for reference solution for which to plot the box plot.

validity.max: Do not plot solutions with cluster numbers resulting above in a validity index above validity.max.

col.best.match: Color to use for plotting the line indicating the position of the best match.

rain.data: vector with rainfall data.

show.data: boolean, indicating whether to show discharge data.

show.data.measured: boolean, indicating whether to show measured discharge data.

show.data.model: boolean, indicating whether to show modeled discharge data.

show.errors: boolean, indicating whether to show error type bars.

grid.nx: number of grid lines to be ploted (see grid).

... additional parameters passed to plot.
Details

box.plot: for each performance measure, a box plot is created showing the values for each cluster
errors.in.time: occurrence of the errors cluster along the time dimension
peaks.in.clusters: table of the position of the synthetic peak errors in the clusters.
peaks.measures: response of the performance measures to the synthetic peak errors.
scatterplot: scatter plot of the performance measures
See package vignette for further details about which plot does what.

Value

used for the side effect of plotting results

Author(s)

Dominik Reusser

References

See Also

The package vignette

Examples

data(tiger.example)
new.order <- c(6,3,2,5,4,1)
correlated <- correlated(tiger.single, keep=c("CE","RMSE"))

opar <- par(mfrow=c(3,5))
box.plot(tiger.single, solution=6, new.order=new.order, show.synthetic.peaks=TRUE)
box.plot(tiger.single, solution=6, new.order=new.order, show.cell=data.frame(x=1,y=1))
par(opar)
errors.in.time(xval=d.dates, result= tiger.single, solution=6, show.months=TRUE, new.order=new.order)
peaks.in.clusters(tiger.single, solution=6, new.order=new.order)
peaks.measures(tiger.single, show.measures=correlated$measures.uniform$to.keep)
scatterplot(tiger.single$measures.uniform, show.measures=correlated$measures.uniform$to.keep)
Description

These functions allow generation of synthetic hydrologic peaks generated from a combination of exponential functions. Also, synthetic errors for the reproduction of a reference peak can be generated in order to subsequentially test the behaviour of performance measures with respect to these errors.

Usage

```r
synth.peak(base = 0.07, base.time = 6, rise.time = 5, rise.factor, recession.const = 0.2, length.out = 240, rez.time = length.out - ceiling(base.time) - ceiling(rise.time))
synth.peak.error(base = 0.07, base.time = 6, rise.time = 5, rise.factor, rise.factor2, recession.const = 0.2, length.out = 240, rez.time = length.out - base.time - rise.time, err1.factor = c(1.2, 1.4, 1.6), err2.factor = c(0.01, 0.02, 0.04), err3.factor = c(2, 4, 8), err4.factor = c(9, 18, 27), err5.factor = c(0.1, 0.2, 0.4), err6.factor = c(1.5, 2, 3), err9.factor = c(2, 3, 4.5))
p.synth.peak.error(peaks, y.max = (max(peaks, na.rm = TRUE)), peak.cluster = NULL, peak.palette = grey(c(0, 0.6, 0.8)), use.layout = TRUE, show.errors = 1:n.errors, peak.lty = rep(1, n.errors), mfrow = c(2, ceiling(length(show.errors)/2)), plot.legend = TRUE, print.error.nr = TRUE)
```

Arguments

- `base`: Level of the base flow component
- `base.time`: Number of time steps before the rise phase starts. May be negative, such that the peak starts outside the window.
- `rise.time`: Number of time steps for the rise phase
- `rise.factor`: The peak maximum is about `rise.factor` higher than the base flow.
- `rise.factor2`: `rise.factor` for the "peaks" which only show a recession phase.
- `recession.const`: Reccession constant for the peak.
- `length.out`: Total length of the time series to be returned.
- `rez.time`: Length of the recession phase
- `err1.factor`: Factors to use for the first error type: Over- and underestimation of the peak
- `err2.factor`: Factors to use for the second error type: shifting of the entire time series
- `err3.factor`: Factors to use for the third error type: Recession too fast/too slow
synth.peak.error

- **err4.factor** Factors to use for the fourth error type: Lag time
- **err5.factor** Factors to use for the fifth error type: Correct total volume, but peak over/underestimated
- **err6.factor** Factors to use for the sixth error type: Peak too wide/too narrow
- **err9.factor** Factors to use for the ninth error type: Shift during the recession phase
- **peaks** object returned from `synth.peak.error()`
- **y.max** upper limit for the y-axis
- **peak.cluster** object returned from `peaks.in.clusters` used for coloring the cluster assignment of synthetic peaks (see examples)
- **peak.palette** Colors to use if peak.cluster is NULL: first color for reference, second and third for peaks over- and underestimating the reference
- **use.layout** Boolean, indicating whether to use the predefined layout
- **plot.legend** Boolean, indicating whether to show the legend
- **print.error.nr** Boolean, indicating whether to label each subplot with a number
- **mfrow** mfrow plot parameter (only used, if use.layout=FALSE)
- **show.errors** Vector with indices indicating which errors to display
- **peak.lty** Line types for either clusters as defined in peak.cluster or as in peak.palette

Value

`synth.peak` returns a vector with the synthetic peak according to the provided parameters `synth.peak.error` returns an array with dimension 3. The first dimension corresponds to the error type. The second dimension to the level of the corresponding error type. The third dimension corresponds to the time.

Author(s)

Dominik Reusser

References

See Also

The package vignette

Examples

```r
ref.peak <- synth.peak(rise.factor=2, recession.const=0.02)
peaks <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5)
peaks2 <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5, err1.factor=c(1.3,1.5,2.0), err2.factor = c(0.02,0.03,0.06), err3.factor=c(2,4,10), err4.factor = c(9,22,40), err5.factor = c(0.2,0.3,0.5),
```
tiger

Calculate temporal dynamics of model performance

Description

About fifty performance measures are calculated for a gliding window, comparing two time series. The resulting matrix is clustered, such that each time window can be assigned to an error type cluster. The mean performance measures for each cluster can be used to give meaning to each cluster. Additionally, synthetic peaks are used to better characterize the clusters.

Usage

```r
modelled, measured, window.size, step.size = 1,
use.som = TRUE, som.dim = c(20, 20), som.init =
"sample", som.topol = "hexa", maxc = 15,
synthetic.errors = NA)
```

Arguments

- `modelled`: Time series of modelled data
- `measured`: Time series of measured data
- `window.size`: Size of the moving window
- `maxc`: Maximum number of clusters to be tested
- `synthetic.errors`: Matrix returned from `synth.peak.error`
- `result`: Object returned from `tiger`
- `use.som`: Boolean, indicating whether to use SOM before applying fuzzy clustering
- `som.dim`: Dimension of the Self Organizing Map (SOM) c(x,y)
- `som.init`: Method to initialize the SOM
- `som.topol`: Topology of the SOM
- `step.size`: Size of the steps defining the number of scores to be calculating along the time series. For example, with a value of 5 every fifth value is included
Details

See the package vignette.

Value

- `maxc` : see input parameter
- `window.size` : see input parameter
- `modelled` : see input parameter
- `measured` : see input parameter
- `synthetic.errors` : see input parameter
- `measures.synthetic.peaks` : matrix of performance measures for synthetic errors
- `measures` : matrix of performance measures for the gliding time window
- `na.rows` : vector of boolean, indicating which time windows contain NA values
- `names` : names of the performance measures
- `measures.uniform` : measures, transformed to uniform distribution
- `measures.uniform.synthetic.peaks` : measures for synthetic errors, transformed with the corresponding transformation from previous item
- `error.names` : names of the synthetic error types
- `best.value.location` : list, indicating what the value for “no error” for each performance measure is
- `validityMeasure` : vector with validity index for solutions with 2:maxc clusters
- `cluster.assignment` : list of 2:maxc objects returned from `cmeans`

Author(s)

Dominik Reusser

References

See Also

The package vignette
Examples

data(tiger.example)
modelled <- tiger.single$modelled
measured <- tiger.single$measured
peaks <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5)
Not run: result2 <- tiger(modelled=modelled, measured=measured, window.size=240, synthetic.errors=peaks)
errors.in.time(d.dates, result2, solution=6, show.months=TRUE)
End(Not run)

peaks2 <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5, err1.factor=c(1.3,1.5,2.0), err2.factor = c(0.02,0.03,0.06), err3.factor=c(2,4,10), err4.factor = c(9,22,40), err5.factor = c(0.2,0.3,0.5), err6.factor = c(2,3,5), err9.factor=c(1.5,3,6))

Not run: result3 <- tiger.peaks(result2, peaks2)

peaks.in.clusters(result2, solution=6)
x11()
peaks.in.clusters(result3, solution=6)
End(Not run)

tiger.res

Example data for TIGER package

Description

Example data for temppreform package

Usage

data(tiger.example)

Format

Object returned from tiger.

Source

to.uniform

Examples

```r
data(tiger.example)
errors.in.time(dates, tiger.multi, solution=6, show.months=TRUE)
```

to.uniform
Transform data to uniform distribution

Description

Transform data to uniform distribution. Optionally, a set of values can be transformed against a reference set of data.

Usage

```r
to.uniform(ref, val = NA)
```

Arguments

- `ref`: Set of values that determine the transformation
- `val`: Values to be transformed

Details

If `values` is `NA`, the reference set itself will be transformed.

Value

Vector with transformed values.

Author(s)

Dominik Reusser

Examples

```r
a <- rnorm(100)
hist(a)
b <- to.uniform(a)
hist(b)
c <- to.uniform(ref=a, val=c(-0.5,0,0.5))
```
validityIndex

Validity Index for fuzzy clustering

Description
Calculate the validity index for fuzzy clusters. A validity index below 1 indicates that in between clusters is larger than within clusters. Evaluating the validity index for various numbers of desired clusters may help to find the minimum.

Usage
validityIndex(cclust, values, verbose = FALSE)

Arguments
cclust object returned from cmeans
values data provided as x to cmeans
verbose boolean. If true, values for numerator and denominator are printed.

Value
A single number, the validity index.

Author(s)
Dominik Reusser

References

See Also
cmeans for the fuzzy clustering itself

Examples
myOrig <- matrix(c(c(1,0,0,1),
 c(0,0,1,2),
 c(1,1,0,3)), nrow=3, ncol=4, byrow=TRUE)

myData <- rbind(
 matrix(myOrig[1,], nrow=50, ncol=4, byrow=TRUE),
 matrix(myOrig[2,], nrow=50, ncol=4, byrow=TRUE),
 ...
```r
validityIndex

    matrix(myOrig[3,, nrow=50, ncol=4, byrow=TRUE)

str(myData)
myData[,1:3] <- myData[,1:3] + rnorm(3*150)*0.3
myData

maxc <- 10

require(e1071)
validity <- rep(NA, maxc)
all.cluster.rer <- list()
for (centers in 2:maxc){
    cluster.rer<-cmeans(x=myData, centers=centers, method="cmeans", m=2)
    validity[centers] <- validityIndex(cluster.rer , myData)
    all.cluster.rer[[centers]] <- cluster.rer
}

plot(validity, type="l")
```
Index

*Topic **color**
 - color.factor, 4

*Topic **datasets**
 - example.peaks, 10
 - tiger.res, 22

*Topic **hplot**
 - plots, 15
 - synth.peak.error, 18

*Topic **package**
 - tiger-package, 2

*Topic **univar**
 - nashS, 14

*Topic **utilities**
 - change.order.clusters, 3
 - correlated, 4
 - count.diff.direction.error, 6
 - diagnostic, 7
 - eD, 9
 - include.others, 10
 - k_hyd, 11
 - k_rel, 12
 - lagtime, 13
 - nashS, 14
 - plots, 15
 - synth.peak.error, 18
 - tiger, 20
 - to.uniform, 23
 - validityindex, 24

box.plots, 11
box.plots (plots), 15

ccf, 13
change.order.clusters, 3, 16
cmeans, 3, 21, 24
color.factor, 4
cor, 8
correl (correlated), 4
correlated, 4
count.diff.direction.error, 6, 8
d.dates (tiger.res), 22
diagnostic, 7
diagnostic_dawson, 6, 11–13
diagnostic_dawson (diagnostic), 7
diagnostic_series (diagnostic), 7
diagnostic_window (diagnostic), 7
edcf, 8
eD, 9
errors.in.time (plots), 15
example.peaks, 10

grid, 16
include.others, 10
k_hyd, 11, 12
k_rel, 8, 12
lagtime, 8, 13
nashS, 8, 14
nashS_HF (nashS), 14
p.synth.peak.error (synth.peak.error), 18
p.validityIndex (plots), 15
par, 16
peaks.in.clusters, 19
peaks.in.clusters (plots), 15
peaks.measures (plots), 15
peaks.on.som (plots), 15
plots, 15
qualV, 8
reference.peak (example.peaks), 10
scatterplot (plots), 15
synth.peak (synth.peak.error), 18
synth.peak.error, 18, 20
INDEX

tiger, 5, 15, 20, 22
tiger-package, 2
tiger.example(tiger.res), 22
tiger.multi(tiger.res), 22
tiger.res, 22
tiger.single(tiger.res), 22
to.uniform, 23

validityIndex, 15, 24