Package ‘triangle’

January 21, 2016

Type Package
Title Provides the Standard Distribution Functions for the Triangle Distribution
Version 0.10
Date 2016-01-20
Author Rob Carnell
Maintainer Rob Carnell <bertcarnell@gmail.com>
Depends R (>= 2.14.1)
Description Provides the "r, q, p, and d" distribution functions for the triangle distribution.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-21 08:26:50

R topics documented:

triangle-package .. 1
ltriangle .. 2
triangle ... 3

Index

triangle-package Triangle Distributions

Description

Contains distribution functions for the triangle distribution and triangle distribution on a lognormal scale
The Logarithmic Triangle Distribution

Description

These functions provide information about the triangle distribution on the logarithmic interval from a to b with a maximum at c. \texttt{dltriangle} gives the density, \texttt{pltriangle} gives the distribution function, \texttt{qltriangle} gives the quantile function, and \texttt{rltriangle} generates n random deviates.

Usage

\begin{verbatim}
dlt(x, a=1, b=100, c=10^((\log10(a)+\log10(b))/2), logbase=10)
plt(q, a=1, b=100, c=10^((\log10(a)+\log10(b))/2), logbase=10)
qlt(p, a=1, b=100, c=10^((\log10(a)+\log10(b))/2), logbase=10)
rlt(n=1, a=1, b=100, c=10^((\log10(a)+\log10(b))/2), logbase=10)
\end{verbatim}

Arguments

- \(x, q\): vector of quantiles.
- \(p\): vector of probabilities.
- \(a\): lower limit of the distribution.
- \(b\): upper limit of the distribution.
- \(c\): mode of the distribution.
- \(n\): number of observations. If \(\text{length}(n) > 1\), the length is taken to be the number required.
- \(\text{logbase}\): the base of the logarithm to use.

Details

All probabilities are lower tailed probabilities.
a, b, and c may be appropriate length vectors except in the case of \texttt{rltriangle}.

Value

\texttt{dltriangle} gives the density, \texttt{pltriangle} gives the distribution function, \texttt{qltriangle} gives the quantile function, and \texttt{rltriangle} generates random deviates.

Invalid arguments will result in return value \(\text{NaN}\) or \(\text{NA}\).

Author(s)

Rob Carnell

References

See Also

See Also

.Random.seed about random number generation, runif, etc for other distributions.

Examples

view the distribution
tri <- rltriangle(100000, 1, 100, 10)
hist(log10(tri), breaks=100, main="Triangle Distribution", xlab="x")

dtriangle(10, 1, 100, 10) # 2/(log10(b)-log10(a)) = 1

qltriangle(pltriangle(10)) # 10

triangle

The Triangle Distribution

Description

These functions provide information about the triangle distribution on the interval from a to b with a maximum at c. dtriangle gives the density, ptriangle gives the distribution function, qtriangle gives the quantile function, and rtriangle generates n random deviates.

Usage

dtriangle(x, a=0, b=1, c=(a+b)/2)
ptriangle(q, a=0, b=1, c=(a+b)/2)
qtriangle(p, a=0, b=1, c=(a+b)/2)
rtriangle(n, a=0, b=1, c=(a+b)/2)

Arguments

x, q vector of quantiles.
p vector of probabilities.
a lower limit of the distribution.
b upper limit of the distribution.
c mode of the distribution.
n number of observations. If length(n) > 1, the length is taken to be the number required.

Details

All probabilities are lower tailed probabilities.
a, b, and c may be appropriate length vectors except in the case of rtriangle.
rtriangle is derived from a draw from runif.
The triangle distribution has density:

\[f(x) = \frac{2(x - a)}{(b - a)(c - a)} \]

for \(a \leq x < c \).

\[f(x) = \frac{2(b - x)}{(b - a)(b - c)} \]

for \(c \leq x \leq b \). \(f(x) = 0 \) elsewhere.

The mean and variance are:

\[E(x) = \frac{(a + b + c)}{3} \]

\[V(x) = \frac{1}{18}(a^2 + b^2 + c^2 - ab - ac - bc) \]

Value

dtriangle gives the density, ptriangle gives the distribution function, qtriangle gives the quantile function, and rtriangle generates random deviates.

Invalid arguments will result in return value NaN or NA.

Author(s)
Rob Carnell

References

See Also

.Random.seed about random number generation, runif, etc for other distributions.

Examples

```r
## view the distribution
tri <- rtriangle(100000, 1, 5, 3)
hist(tri, breaks=100, main="Triangle Distribution", xlab="x")

mean(tri) # 1/3*(1 + 5 + 3) = 3
var(tri) # 1/18*(1^2 + 3^2 + 5^2 - 1*5 - 1*3 - 5*3) = 0.666667
dtriangle(0.5, 0, 1, 0.5) # 2/(b-a) = 2
qtriangle(ptriangle(0.7)) # 0.7
```
Index

*Topic distribution
 ltriangle, 2
 triangle, 3
 triangle-package, 1
 Random.seed, 3, 4

dlttriangle(ltriangle), 2
dtriangle(triangle), 3

ltriangle, 2

pltriangle(ltriangle), 2
ptriangle(triangle), 3

qltriangle(ltriangle), 2
qtriangle(triangle), 3

rltriangle(ltriangle), 2
rtriangle(triangle), 3
runif, 3, 4

triangle, 3
triangle-package, 1