Package ‘trimcluster’

July 20, 2018

Title Cluster Analysis with Trimming
Version 0.1-2.1
Date 2007-11-05
Author Christian Hennig <chrish@stats.ucl.ac.uk>
Depends R (>= 1.9.0)
Suggests fpc
Description Trimmed k-means clustering.
Maintainer ORPHANED
License GPL

URL http://www.homepages.ucl.ac.uk/~ucakche/
Repository CRAN
Date/Publication 2018-07-20 12:43:37 UTC
NeedsCompilation no

X-CRAN-Original-Maintainer Christian Hennig <chrish@stats.ucl.ac.uk>
X-CRAN-Comment Orphaned and corrected on 2018-07-20 as check problems were not corrected despite reminders.

R topics documented:

trimkmeans ... 2

Index 5

1
trimmed k-means clustering

Description

The trimmed k-means clustering method by Cuesta-Albertos, Gordaliza and Matran (1997). This optimizes the k-means criterion under trimming a portion of the points.

Usage

```r
trimkmeans(data, k, trim=0.1, scaling=FALSE, runs=100, points=NULL, countmode=runs+1, printcrit=FALSE, maxit=2*nrow(as.matrix(data))
```

```r
## S3 method for class 'tkm'
print(x, ...)
## S3 method for class 'tkm'
plot(x, data, ...)
```

Arguments

- `data`: matrix or data.frame with raw data
- `k`: integer. Number of clusters.
- `trim`: numeric between 0 and 1. Proportion of points to be trimmed.
- `scaling`: logical. If TRUE, the variables are centered at their means and scaled to unit variance before execution.
- `runs`: integer. Number of algorithm runs from initial means (randomly chosen from the data points).
- `points`: NULL or a matrix with k vectors used as means to initialize the algorithm. If initial mean vectors are specified, runs should be 1 (otherwise the same initial means are used for all runs).
- `countmode`: optional positive integer. Every countmode algorithm runs `trimkmeans` shows a message.
- `printcrit`: logical. If TRUE, all criterion values (mean squares) of the algorithm runs are printed.
- `maxit`: integer. Maximum number of iterations within an algorithm run. Each iteration determines all points which are closer to a different cluster center than the one to which they are currently assigned. The algorithm terminates if no more points have to be reassigned, or if `maxit` is reached.
- `x`: object of class tkm.
- `...`: further arguments to be transferred to plot or `plotcluster`.
Details

plot.tkm calls `plotcluster` if the dimensionality of the data \(p \) is 1, shows a scatterplot with non-trimmed regions if \(p=2 \) and discriminant coordinates computed from the clusters (ignoring the trimmed points) if \(p>2 \).

Value

An object of class 'tkm' which is a LIST with components

- `classification`: integer vector coding cluster membership with trimmed observations coded as \(k+1 \).
- `means`: numerical matrix giving the mean vectors of the \(k \) classes.
- `disttom`: vector of squared Euclidean distances of all points to the closest mean.
- `ropt`: maximum value of `disttom` so that the corresponding point is not trimmed.
- `k`: see above.
- `trim`: see above.
- `runs`: see above.
- `scaling`: see above.

Author(s)

Christian Hennig <chrish@stats.ucl.ac.uk> [http://www.homepages.ucl.ac.uk/~ucakche/]

References

See Also

`plotcluster`

Examples

```r
set.seed(10001)
n1 <- 60
n2 <- 60
n3 <- 70
n0 <- 10
nn <- n1+n2+n3+n0
pp <- 2
X <- matrix(rep(0, nn*pp), nrow=nn)
ii <- 0
for (i in 1:n1){
  ii <- ii+1
  X[ii,] <- c(5,-5)+rnorm(2)
}
for (i in 1:n2){
```
```r
ii <- ii+1
X[ii,] <- c(5,5)+rnorm(2)*0.75
}
for (i in 1:n3){
  ii <- ii+1
  X[ii,] <- c(-5,-5)+rnorm(2)*0.75
}
for (i in 1:n0){
  ii <- ii+1
  X[ii,] <- rnorm(2)*8
}
tkm1 <- trimkmeans(X,k=3,trim=0.1,runs=3)
# runs=3 is used to save computing time.
print(tkm1)
plot(tkm1,X)
```
Index

*Topic cluster
trimkmeans, 2

*Topic multivariate
trimkmeans, 2

plot.tkm(trimkmeans), 2
plotcluster, 2, 3
print.tkm(trimkmeans), 2

trimkmeans, 2