Package ‘trunCGof’

February 20, 2015

Type Package
Title GoF tests allowing for left truncated data
Version 0.6-0
Date 2012-12-24
Author Thomas Wolter <thwolter@gmail.com>
Maintainer Renato Vitolo <renato.vitolo@banca.mps.it>
Depends R (>= 2.4.0), MASS
Description Goodness-of-fit tests and some adjusted exploratory tools allowing for left truncated data
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-12-25 08:11:28
NeedsCompilation yes

R topics documented:

ad.test .. 2
ad2.test .. 3
ad2up.test .. 5
adup.test ... 6
cdens ... 8
dplot ... 9
edf ... 10
ks.test ... 11
mctest ... 13
qplot ... 15
v.test .. 16
w2.test .. 17

Index 19
Supremum Class Anderson-Darling test

Description

Supremum class version of the Anderson-Darling test providing a comparison of a fitted distribution with the empirical distribution.

Usage

```r
ad.test(x, distn, fit, H = NA,
        alternative = c("two.sided", "less", "greater"),
        sim = 100, tol = 1e-04, estfun = NA)
```

Arguments

- **x**: a numeric vector of data values
- **distn**: character string naming the null distribution function
- **fit**: list of null distribution parameters
- **H**: a threshold value
- **alternative**: indicates the alternative hypothesis and must be one of "two.sided" (default), "less", or "greater". Initial letter must be specified only.
- **sim**: maximum number of scenarios in the Monte-Carlo simulation
- **tol**: if the difference of two subsequent p-value calculations is lower than tol the Monte-Carlo simulation stops
- **estfun**: an function as character string or NA (default). See `mctest`.

Details

The supremum class Anderson-Darling test compares the null distribution with the empirical distribution of the observed data. The test statistic is given by

\[
AD^+ = \sqrt{n} \sup_j \left\{ \frac{z_H + \frac{j}{n} (1 - z_H) - z_j}{\sqrt{(z_j - z_H)(1 - z_j)}} \right\}
\]

\[
AD^- = \sqrt{n} \sup_j \left\{ \frac{z_j - (z_H + \frac{j-1}{n} (1 - z_H))}{\sqrt{(z_j - z_H)(1 - z_j)}} \right\}
\]

\[
AD = \max\{AD^+, AD^-\}
\]

with \(z_H = F_{\theta}(H) \) and \(z_j = F_{\theta}(x_j) \), where \(x_1, \ldots, x_n \) are the ordered data values. Here, \(F_{\theta} \) is the null distribution.
Value

A list with class "mchtest" containing the following components

- statistic: the value of the Supremum Class Anderson-Darling statistic
- treshold: the threshold value
- p.value: the p-value of the test
- data.name: a character string giving the name of the data
- method: the character string "Supremum Class Anderson-Darling test"
- alternative: the alternative
- sim.no: number of simulated scenarios in the Monte-Carlo simulation

References

See Also

ks.test, v.test, adup.test for other supremum class tests and ad2.test, ad2up.test, w2.test for quadratic class tests. For more details see mctest.

Examples

```r
set.seed(123)
treshold <- 10
xc <- rlnorm(100, 2, 2)  # complete sample
xt <- xc[xc > treshold]   # left truncated sample
ad.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)
```

ad2.test

Quadratic Class Anderson-Darling test

Description

Quadratic class Anderson-Darling test providing a comparison of a fitted distribution with the empirical distribution.

Usage

```r
ad2.test(x, distn, fit, H = NA, sim = 100, tol = 1e-04, estfun = NA)
```
Arguments

- `x`: a numeric vector of data values
- `distn`: character string naming the null distribution
- `fit`: list of null distribution parameters
- `H`: a threshold value
- `sim`: maximum number of scenarios in the Monte-Carlo simulation
- `tol`: if the difference of two subsequent p-value calculations is lower than `tol` the Monte-Carlo simulation is discontinued
- `estfun`: an function as character string or `NA` (default). See `mctest`.

Details

The Anderson-Darling test compares the null distribution with the empirical distribution function of the observed data, where left truncated data samples are allowed. The test statistic is given by

\[AD^2 = -n + 2n \log(1 - z_H) - \frac{1}{n} \sum_{j=1}^{n} (1 + 2(n - j)) \log(1 - z_j) + \frac{1}{n} \sum_{j=1}^{n} (1 - 2j) \log(z_j - z_H) \]

with \(z_H = F_\theta(H) \) and \(z_j = F_\theta(x_j) \), where \(x_1, \ldots, x_n \) are the ordered data values. Here, \(F_\theta \) is the null distribution.

Value

A list with class "mchtest" containing the following components

- `statistic`: the value of the Quadratic Class Anderson-Darling statistic
- `threshold`: the threshold value
- `p.value`: the p-value of the test
- `data.name`: a character string giving the name of the data
- `method`: the character string "Quadratic Class Anderson-Darling test"
- `sim.no`: number of simulated scenarios in the Monte-Carlo simulation

References

Chernobay, A., Rachev, S., Fabozzi, F. (2005), *Composites goodness-of-fit tests for left-truncated loss samples*, Tech. rep., University of California Santa Barbara

See Also

`ad2up.test`, `w2.test` for other quadratic class tests and `ks.test`, `v.test`, `adup.test`, `ad.test` for supremum class tests. For more details see `mctest`.
Examples

```r
set.seed(123)
treshold <- 10
xc <- rlnorm(1000, 2, 2)  # complete sample
xt <- xc[xc >= treshold]  # left truncated sample
ad2.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)
```

Description

Quadratic Class Upper Tail Anderson-Darling test providing a comparison of a fitted distribution with the empirical distribution.

Usage

```r
ad2up.test(x, distn, fit, H = NA, sim = 100, tol = 1e-04, estfun = NA)
```

Arguments

- `x`: a numeric vector of data values
- `distn`: character string naming the null distribution
- `fit`: list of null distribution parameters
- `H`: a threshold value
- `sim`: maximum number of scenarios in the Monte-Carlo simulation
- `tol`: if the difference of two subsequent p-value calculations is lower than tol the Monte-Carlo simulation is discontinued
- `estfun`: an function as character string or NA (default). See `mctest`.

Details

The Anderson-Darling test compares the null distribution with the empirical distribution function of the observed data, where left truncated data samples are allowed. The test statistic is given by

\[
AD_{up}^2 = -2 n \log(1 - z_H) + 2 \sum_{j=1}^{n} \log(1 - z_j) + \frac{1 - z_H}{n} \sum_{j=1}^{n} (1 + 2(n - j)) \frac{1}{1 - z_j}
\]

with \(z_H = F_\theta(H)\) and \(z_j = F_\theta(x_j)\), where \(x_1, \ldots, x_n\) are the ordered data values. Here, \(F_\theta\) is the null distribution.
adup.test

Value

A list with class "mchtest" containing the following components

- **statistic**: the value of the Quadratic Class Upper Tail Anderson-Darling statistic
- **threshold**: the threshold value
- **p.value**: the p-value of the test
- **data.name**: a character string giving the name of the data
- **method**: the character string "Quadratic Class Upper Tail Anderson-Darling Test"
- **sim.no**: number of simulated scenarios in the Monte-Carlo simulation

References

Chernobay, A., Rachev, S., Fabozzi, F. (2005), *Composites goodness-of-fit tests for left-truncated loss samples*, Tech. rep., University of Calivornia Santa Barbara

See Also

- `ad2.test`, `w2.test` for other quadratic class tests and `ks.test`, `v.test`, `adup.test`, `ad.test` for supremum class tests. For more details see `mctest`.

Examples

```r
set.seed(123)
threshold <- 10
xc <- rlnorm(100, 2, 2)  # complete sample
xt <- xc[xc > threshold]  # left truncated sample
adup.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)
```

Supremum Class Upper Tail Anderson-Darling test

Description

Supremum class version of the Upper Tail Anderson-Darling test providing a comparison of a fitted distribution with the empirical distribution.

Usage

```r
adup.test(x, distn, fit, H = NA,
    alternative = c("two.sided", "less", "greater"),
    sim = 100, tol = 1e-04, estfun = NA)
```
adup.test

Arguments

x a numeric vector of data values
distn character string naming the null distribution
fit list of null distribution parameters
h a threshold value
alternative indicates the alternative hypothesis and must be one of "two.sided" (default), "less", or "greater". Initial letter must be specified only.
sim maximum number of scenarios in the Monte-Carlo simulation
tol if the difference of two subsequent p-value calculations is lower than tol the Monte-Carlo simulation is discontinued
estfun an function as character string or NA (default). See mctest.

Details

The supremum class Upper Tail Anderson-Darling test compares the null distribution with the empirical distribution function of the observed data. The test statistic is given by

\[
ADup^+ = \sqrt{n} \sup_j \left\{ \frac{j}{n} - \frac{z_j}{1 - z_j} \right\}
\]

\[
ADup^- = \sqrt{n} \sup_j \left\{ \frac{z_j - \frac{j-1}{n}}{1 - z_j} \right\}
\]

\[
ADup = \max\{ADup^+, ADup^-.\}
\]

with \(z_H = F_{\theta}(H) \) and \(z_j = F_{\theta}(x_j) \), where \(x_1, \ldots, x_n \) are the ordered data values. Here, \(F_{\theta} \) is the null distribution.

Value

A list with class "mchtest" containing the following components

- statistic the value of the Supremum Class Upper Tail Anderson-Darling statistic
- treshold the threshold value
- p.value the p-value of the test
- data.name a character string giving the name of the data
- method the character string "Supremum Class Upper Tail Anderson-Darling test"
- alternative the alternative
- sim.no number of simulated scenarios in the Monte-Carlo simulation

References

Chernobay, A., Rachev, S., Fabozzi, F. (2005), Composites goodness-of-fit tests for left-truncated loss samples, Tech. rep., University of California Santa Barbara
cdens

Build a conditional density function

Description

For a given distribution function cdens builds a conditional density function with respect to a relevant treshold.

Usage

cdens(distn, H)

Arguments

distn character string naming the distribution function for which the conditional density is to be built

H a treshold value

Details

For \(x \geq H \) the conditional density \(f^* \) of a density \(f \) is given by

\[
f^*_\theta(x) = f(x|x \geq H) = \frac{f_\theta(x)}{1 - F_\theta(H)},
\]

with \(\theta \) the parameters of the distribution, \(F \) the cumulative distribution function and \(H \) the threshold value. For \(x < H \), \(f^* \) disappear.

Value

The conditional density of the specified density function with arguments \(x \), the relevant parameters and the threshold \(H \) predefined as the value of cdens’ argument \(H \). \(x \) can be a numeric value or numeric vector, but must be greater or equal to \(H \).

See Also
density functions, e.g. \texttt{dlnorm}, \texttt{dgamma}, etc.

Examples

\begin{verbatim}
set.seed(123)
threshold <- 10
xc <- rlnorm(100, 2, 2) # complete sample
xt <- xc[xc >= treshold] # left truncated sample
adup.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)
\end{verbatim}
Examples

```r
require(MASS)
s.set.seed(123)
treshold <- 10
xc <- rlnorm(100, 2, 2) # complete sample
xt <- xc[xc >= treshold] # left truncated sample

clnorm <- cdens("plnorm", H = treshold)
args(clnorm)

# mle fitting based on the complete sample
start <- list(meanlog = 2, sdlog = 1)
fitdistr(xc, dlnorm, start = start)

# mle fitting based on the truncated sample
fitdistr(xt, clnorm, start = start)

# in contrast
fitdistr(xt, dlnorm, start = start)
```

dplot

Plot of the distribution functions

Description

Plot the empirical against the theoretical distribution function.

Usage

```r
dplot(x, distn, parm, H = NA, verticals = FALSE, ...)
```

Arguments

- `x`: a numeric vector of data samples
- `distn`: character string naming the theoretical distribution function
- `parm`: list of theoretical distribution parameters
- `H`: a threshold value
- `verticals`: see `plot.stepfun`
- `...`: graphical parameters can be given as arguments to `plot`

Details

The empirical and the theoretical distribution function specified by the arguments `distn` and `parm` are plotted in one single graphic. For truncated data values it is important to assign the threshold value `H`.
edf

Empirical distribution function

Description

Empirical distribution function of left truncated data with known distribution.

Usage

```r
edf(x, distn = NA, parm = NA, H = NA)
```

Arguments

- `x`: a numerical vector of data values
- `distn`: character string naming the distribution function
- `parm`: list of distribution parameters
- `H`: a threshold value

Details

`edf` is a version of `ecdf` allowing left truncated data. If `distn` is not assigned all other arguments except `x` are ignored and the result is exactly the same as of `ecdf`.

Value

A function of class "stepfun".

See Also

- `ecdf`
- `dplot`
Examples

```r
set.seed(123)
treshold <- 10
xc <- rlnorm(30, meanlog = 2, sdlog = 1)  # complete sample
xt <- xc[xc >= treshold]  # truncated sample

# the results are identical:
plot(edf(xc))
plot(ecdf(xc))

# considering truncated samples:
plot(edf(xt))  # wrong plot
plot(edf(xt, "plnorm", list(meanlog = 2, sdlog = 1), H = 10))
```

ks.test
Kolmogorov-Smirnov test

Description

Kolmogorov-Smirnov test providing a comparison of a fitted distribution with the empirical distribution.

Usage

```r
ks.test(x, distn, fit, H = NA,
    alternative = c("two.sided", "less", "greater"),
    sim = 100, tol = 1e-04, estfun = NA)
```

Arguments

- **x**: a numeric vector of data values
- **distn**: character string naming the null distribution
- **fit**: list of null distribution parameters
- **H**: a threshold value
- **alternative**: indicates the alternative hypothesis and must be one of "two.sided" (default), "less", or "greater". Initial letter must be specified only.
- **sim**: maximum number of scenarios in the Monte-Carlo simulation
- **tol**: if the difference of two subsequent p-value calculations is lower than tol the Monte-Carlo simulation is discontinued
- **estfun**: an function as character string or NA (default). See `mctest`.
Details

The Kolmogorov-Smirnov test compares the null distribution with the empirical distribution function of the observed data, where left truncated data samples are allowed. The test statistic is given by

\[
KS^+ = \frac{\sqrt{n}}{1 - z_H} \sup_j \{ z_H + \frac{j}{n} (1 - z_H) - z_j \}
\]

\[
KS^- = \frac{\sqrt{n}}{1 - z_H} \sup_j \{ z_j - (z_H + \frac{j - 1}{n} (1 - z_H)) \}
\]

\[
KS = \max\{ KS^+, KS^- \},
\]

with \(z_H = F_\theta(H) \) and \(z_j = F_\theta(x_j) \), where \(x_1, \ldots, x_n \) are the ordered data values. Here, \(F_\theta \) is the null distribution.

Value

A list with class "mchtest" containing the following components

- statistic: the value of the Kolmogorov-Smirnov statistic
- treshold: the threshold value
- p.value: the p-value of the test
- data.name: a character string giving the name of the data
- method: the character string "Kolmorov-Smirnov test"
- alternative: the alternative
- sim.no: number of simulated szenarios in the Monte-Carlo simulation

References

See Also

ad.test, v.test, adup.test for other supremum class tests and ad2.test, ad2up.test, w2.test for quadratic class tests. For more details see mctest.

Examples

```R
set.seed(123)
treshold <- 10
xc <- rnorm(100, 2, 2)  # complete sample
xt <- xc[xc > treshold]  # left truncated sample
ks.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)
```
mctest

Monte-Carlo simulation based GoF test

Description

Performs Monte-Carlo based Goodness-of-Fit tests. mctest is called by the GoF tests defined in this package. For internal use only.

Usage

mctest(x, distn, parm, H, sim, tol, STATISTIC, estfun)

Arguments

x numerical vector of data values

distn character string specifying the null distribution

parm parameters of the null distribution

H a treshold value

sim maximum number of scenarios within the Monte-Carlo-Simulation

tol if the difference of two subsequent p-value calculations is lower than tol the Monte-Carlo simulation stops

STATISTIC function of the test statistic

estfun an function as character string or NA, see details.

Details

From the fitted null distribution mctest draws samples each with length of the observed sample x and with treshold H. The random numbers are taken from the conditional distribution with support \([H, \infty)\). The maximum number of samples is specified by sim. For each of these samples the conditional distribution is fitted and the statistic given in STATISTIC is calculated. The p-value is the proportion of times the sample statistics values exceed the statistic value of the observed sample.

For each scenario sample mctest uses a Maximum-likelihood fitting of the distribution distn as default. This is done by direct optimization of the log-likelihood function using optim.

Alternativly the fitting parameters for the scenario samples might be estimated with a user-specified function assigned in estfun. It must be a function with argument x (and H if desired) which can be parsed. The return value of the evaluated function must be a list with the parameters which should be fitted. Inside mctest the evaluation of estfun is performed with H as assigned in the call of mctest and x the scenario sample.

By assigning a function to estfun, the fitting procedure can be done faster and more appropriate to a given problem. The 'evir' package for example defines a function gpd to fit the Generalized Pareto Model. To start a test it is more reasonable to set estfun = gpd(x, y), where y must be a defined numeric value.
Value

- `TS` value of the test statistic for \(x \)
- `p.value` Monte-Carlo simulation based p-value of the statistic
- `sim` number of simulated scenarios in the Monte-Carlo simulation

References

Chernobay, A., Rachev, S., Fabozzi, F. (2005), *Composites goodness-of-fit tests for left-truncated loss samples*, Tech. rep., University of California Santa Barbara

See Also

`ad2.test, ad2up.test, w2.test` for quadratic class GoF tests and `ks.test, v.test, adup.test, ad.test` for supremum class GoF tests.

Examples

```r
set.seed(123)
treshold <- 10
xc <- rgamma(100, 20, 2)  # complete sample
xt <- xc[xc > treshold]  # left truncated sample

## function for parameter fitting
estimate <- function(x, H){
  cgamma <- cdens("pgamma", H)
  ll <- function(p, y) {
    res <- -sum(do.call("cgamma", list(c(y, p[1], p[2], log = TRUE))))
    if (!is.finite(res)) return(-log(.Machine$double.xmin)*length(x))
    return(res)
  }
  est <- optim(c(1,1), ll, y = x, lower = c(.Machine$double.eps, 0),
    method = "L-BFGS-B")
  as.list(est$par)
}

fit <- estimate(xt, treshold)
cat("fitting parameters:", unlist(fit), "\n")

## calculate p-value with fitting algorithm defined in 'mctest'
ad2up.test(xt, "pgamma", fit, H = treshold, estfun = NA, tol = 1e-02)

## ... or with the function 'estimate'
ad2up.test(xt, "pgamma", fit, H = treshold, estfun = "estimate(x, H)",
  tol = 1e-02)

## not run:
## if the 'evir' package is loaded:
ad.test(xt, "pgpd", list(2,3), H = treshold,
```
qplot

QQ-Plot

Description

Adjusted QQ-Plot allowing for left-truncated data values.

Usage

```r
qplot(x, distn, parm, H = NA, plot.it = TRUE, main = "QQ-Plot",
      xlab = "empirical quantiles", ylab = "theoretical quantiles", ...)
```

Arguments

- `x`: a numeric vector of data values
- `distn`: character string of the distribution
- `parm`: list of distribution parameters
- `H`: a threshold value
- `plot.it`: logical. `TRUE` (default) if the result is to be plotted.
- `xlab`, `ylab`, `main`: plot labels
- `...`: further graphical parameters

See Also

dplot, cdens

Examples

```r
set.seed(123)
threshold <- 10
xc <- rlnorm(100, 2, 2)  # complete sample
xt <- xc[xc > threshold]  # left truncated sample

# for assigned threshold the following
# graphics are identical but not usefull
par(mfrow = c(2,1))
y <- qlnorm(ppoints(length(xt)), 2, 2)
qplot(xt, "plnorm", list(2,2))
qqplot(xt, y); abline(0,1)

# for truncated data rather use
qplot(xt, "plnorm", list(2,2), H = 10)
```
Kuiper test providing a comparison of a fitted distribution with the empirical distribution.

Usage

v.test(x, distn, fit, H = NA, sim = 100, tol = 1e-04, estfun = NA)

Arguments

- **x**: a numeric vector of data values
- **distn**: character string naming the null distribution
- **fit**: list of distribution parameters
- **H**: a threshold value
- **sim**: maximum number of scenarios in the Monte-Carlo simulation
- **tol**: if the difference of two subsequent p-value calculations is lower than tol the Monte-Carlo simulation stops
- **estfun**: an function as character string or NA (default). See mctest.

Details

The Kolmogorov-Smirnov test compares the null distribution with the empirical distribution of the observed data, where left truncated data samples are allowed. The test statistic (see ks.test) is given by \(V = \max\{KS^+, KS^-\} \).

Value

A list with class "mchtest" containing the following components

- **statistic**: the value of the Kuiper statistic
- **threshold**: the threshold value
- **p.value**: the p-value of the test
- **data.name**: a character string giving the name of the data
- **method**: the character string "Kuiper test"
- **sim.no**: number of simulated scenarios in the Monte-Carlo simulation

References

Chernobay, A., Rachev, S., Fabozzi, F. (2005), *Composites goodness-of-fit tests for left-truncated loss samples*, Tech. rep., University of Calivornia Santa Barbara
See Also

`ks.test`, `ad.test`, `adup.test` for other supremum class tests and `ad2.test`, `ad2up.test`, `w2.test` for quadratic class tests. For more details see `mctest`.

Examples

```r
set.seed(123)
treshold <- 10
xc <- rlnorm(100, 2, 2)  # complete sample
xt <- xc[xc >= treshold]  # left truncated sample
v.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)
```

Description

Cramèr-von Mises test providing a comparison of a fitted distribution with the empirical distribution.

Usage

```r
w2.test(x, distn, fit, H = NA, sim = 100, tol = 1e-04, estfun = NA)
```

Arguments

- `x`: a numeric vector of data values
- `distn`: character string naming the null distribution
- `fit`: list of null distribution parameters
- `H`: a threshold value
- `sim`: maximum number of scenarios in the Monte-Carlo simulation
- `tol`: if the difference of two subsequent p-value calculations is lower than `tol` the Monte-Carlo simulation is discontinued
- `estfun`: an function as character string or `NA` (default). See `mctest`.

Details

The Cramèr-von Mies test compares the null distribution with the empirical distribution function of the observed data, where left truncated data samples are allowed. The test statistic is given by

\[
W^2 = \frac{n}{3} + \frac{n z_H}{1 - z_H} + \frac{1}{n(1 - z_H)} \sum_{j=1}^{n} (1 - 2j) z_j + \frac{1}{(1 - z_H)^2} \sum_{j=1}^{n} (z_j - z_H)^2
\]

with \(z_H = F_\theta(H)\) and \(z_j = F_\theta(x_j)\), where \(x_1, \ldots, x_n\) are the ordered data values. Here, \(F_\theta\) is the null distribution.
Value

A list with class "mctest" containing the following components

- `statistic`: the value of the Cramér-von Mises statistic
- `threshold`: the threshold value
- `p.value`: the p-value of the test
- `data.name`: a character string giving the name of the data
- `method`: the character string "Cramer-von Mises test"
- `sim.no`: number of simulated scenarios in the Monte-Carlo simulation

References

Chernobay, A., Rachev, S., Fabozzi, F. (2005), Composites goodness-of-fit tests for left-truncated loss samples, Tech. rep., University of Calivornia Santa Barbara

See Also

`ad2up.test`, `ad2.test` for other quadratic class tests and `ks.test`, `v.test`, `adup.test`, `ad.test` for supremum class tests. For more details see `mctest`.

Examples

```r
set.seed(123)
threshold <- 10
xc <- rlnorm(100, 2, 2)  # complete sample
xt <- xc[xc >= threshold]  # left truncated sample
w2.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)
```
Index

*Topic *aplott
 dplot, 9
 qplot, 15

*Topic *distribution
cdens, 8
edf, 10

*Topic *dplot
edf, 10

*Topic *htest
 adNtest, 2
 adRNtest, 3
 adRupNtest, 5
 adupNtest, 6
 ksNtest, 11
 mctest, 13
 vNtest, 16
 w2.test, 17
ad.test, 2, 4, 6, 8, 12, 14, 17, 18
ad2.test, 3, 3, 6, 8, 12, 14, 17, 18
ad2up.test, 3, 4, 5, 12, 14, 17, 18
adupNtest, 3, 4, 6, 6, 12, 14, 17, 18

cdens, 8, 15
dgamma, 8
dlnorm, 8
dplot, 9, 10, 15
ecdf, 10
edf, 10
ksNtest, 3, 4, 6, 8, 11, 14, 16–18
mctest, 3, 4, 6, 8, 12, 13, 17, 18
plot.ecdf, 10
plot.stepfun, 10
qplot, 15
vNtest, 3, 4, 6, 8, 12, 14, 16, 18

w2.test, 3, 4, 6, 8, 12, 14, 17, 17