Package ‘truncreg’

August 3, 2016

Version 0.2-4

Date 2016-08-03

Title Truncated Gaussian Regression Models

Depends R (>= 1.8.0), maxLik

Suggests survival

Description Estimation of models for truncated Gaussian variables by maximum likelihood.

License GPL (>= 2)

URL http://R-Forge.R-project.org/projects/truncreg/

Author Yves Croissant [aut, cre],
Achim Zeileis [aut]

Maintainer Yves Croissant <yves.croissant@univ-reunion.fr>

Repository CRAN

Repository/R-Forge/Project truncreg

Repository/R-Forge/Revision 10

Repository/R-Forge/DateTimeStamp 2016-08-03 15:06:57

Date/Publication 2016-08-03 23:50:45

NeedsCompilation no

R topics documented:

truncreg .. 2

Index 5
truncreg

Truncated Gaussian Response Models

Description

Estimation of models for truncated Gaussian variables by maximum likelihood.

Usage

truncreg(formula, data, subset, weights, na.action,
 point = 0, direction = "left",
 model = TRUE, y = FALSE, x = FALSE, scaled = FALSE, ...)

Arguments

 formula a symbolic description of the model to be estimated,
 data the data,
 subset an optional vector specifying a subset of observations,
 weights an optional vector of weights,
 na.action a function which indicates what should happen when the data contains 'NA's,
 point the value of truncation (the default is 0),
 direction the direction of the truncation, either "left" (the default) or "right",
 model, y, x logicals. If TRUE the corresponding components of the fit (model frame, re-
 sponse, model matrix) are returned,
 scaled if TRUE, scaled parameters (beta / sigma) are estimated,
 ... further arguments.

Details

The model is estimated with the maxLik package and the Newton-Raphson method, using analytic
gradient and Hessian.

A set of standard extractor functions for fitted model objects is available for objects of class "truncreg",
including methods to the generic functions print, summary, coef, vcov, logLik, residuals,
predict, fitted, model.frame, and model.matrix.

Value

An object of class "truncreg", a list with elements:

 coefficients the named vector of coefficients,
 vcov the variance matrix of the coefficients,
 fitted.values the fitted values,
 logLik the value of the log-likelihood,
trajectory

the gradient of the log-likelihood at convergence,

the number of observations,

the matched call,

the model terms,

the model frame used (if model = TRUE),

the response vector (if y = TRUE),

the model matrix (if x = TRUE),

the truncation point used,

the truncation direction used,

some information about the estimation (time used, optimization method),

References

See Also

maxLik, mhrdile

Examples

```
# Artificial example

# simulate a data.frame
set.seed(1071)
n <- 10000
sigma <- 1
alpha <- 4
beta <- 2
x <- rnorm(n, mean = 0, sd = 2)
eps <- rnorm(n, sd = sigma)
y <- alpha + beta * x + eps
d <- data.frame(y = y, x = x)

# truncated response
d$yt <- ifelse(d$y > 1, d$y, NA)

# binary threshold response
```
```r
## Censored response
d$yc <- pmax(1L, d$y)

## Compare estimates for full/truncated/censored/threshold response
fm_full <- lm(y ~ x, data = d)
fm_trunc <- truncreg(yt ~ x, data = d, point = 1L, direction = "left")
fm_thresh <- glm(yb ~ x, data = d, family = binomial(link = "probit"))
library("survival")
fm_cens <- survreg(Surv(yc, yc > 1L, type = "left") ~ x, data = d, dist = "gaussian")

## Compare scaled regression coefficients
cbind(
  "True"    = c(alpha, beta) / sigma,
  "Full"    = coef(fm_full) / summary(fm_full)$sigma,
  "Truncated" = coef(fm_trunc[1:2]) / coef(fm_trunc[3]),
  "Censored" = coef(fm_cens) / fm_cens$scale,
  "Threshold" = coef(fm_thresh)
)

###########################################################
# Tobin's durable goods data #
###########################################################

## Tobit model (Tobin 1958)
data("tobin", package = "survival")
tobit <- survreg(Surv(durable, durable > 0, type = "left") ~ age + quant,
                 data = tobin, dist = "gaussian")

## Two-part model (Cragg 1971)
## (see "mhurdle" package for a combined solution)
cragg_probit <- glm(factor(durable > 0) ~ age + quant,
                     data = tobin, family = binomial(link = "logit"))
cragg_trunc <- truncreg(durable ~ age + quant, data = tobin, subset = durable > 0)

## Scaled coefficients
cbind(
  "Tobit"    = coef(tobit) / tobit$scale,
  "Binary"   = coef(cragg_probit),
  "Truncated" = coef(cragg_trunc)[1:3] / coef(cragg_trunc)[4])

## Likelihood ratio test and BIC
ll <- c("Tobit" = tobit$loglik[1],
        "Two-Part" = as.vector(logLik(cragg_probit) + logLik(cragg_trunc)))
df <- c(4, 3 + 4)
pchisq(2 * diff(ll), df, lower.tail = FALSE)
-2 * ll + log(nrow(tobin)) * df
```
Index

*Topic regression
 truncreg, 2

 coef, 2
 coef.truncreg(truncreg), 2

 fitted, 2
 fitted.truncreg(truncreg), 2

 logLik, 2
 logLik.truncreg(truncreg), 2

 maxLik, 2, 3
 m hurdle, 3
 model.frame, 2
 model.frame.truncreg(truncreg), 2
 model.matrix, 2
 model.matrix.truncreg(truncreg), 2

 predict, 2
 predict.truncreg(truncreg), 2
 print, 2
 print.summary.truncreg(truncreg), 2
 print.truncreg(truncreg), 2

 residuals, 2
 residuals.truncreg(truncreg), 2

 summary, 2
 summary.truncreg(truncreg), 2

 truncreg, 2

 vcov, 2
 vcov.truncreg(truncreg), 2