Package ‘truncreg’

August 18, 2018

Version 0.2-5
Date 2018-08-17
Title Truncated Gaussian Regression Models
Depends R (>= 1.8.0), maxLik
Suggests survival
Description Estimation of models for truncated Gaussian variables by maximum likelihood.
License GPL (>= 2)

URL http://R-Forge.R-project.org/projects/truncreg/
Author Yves Croissant [aut, cre],
 Achim Zeileis [aut]
Maintainer Yves Croissant <yves.croissant@univ-reunion.fr>
Repository CRAN
Repository/R-Forge/Project truncreg
Repository/R-Forge/Revision 12
Repository/R-Forge/DateTimeStamp 2018-08-18 07:48:26
Date/Publication 2018-08-18 09:40:02 UTC
NeedsCompilation no

R topics documented:

 truncreg .. 2

Index 5
Description

Estimation of models for truncated Gaussian variables by maximum likelihood.

Usage

```r
truncreg(formula, data, subset, weights, na.action,  
  point = 0, direction = "left",  
  model = TRUE, y = FALSE, x = FALSE, scaled = FALSE, ...)  
```

Arguments

- **formula**: a symbolic description of the model to be estimated,
- **data**: the data,
- **subset**: an optional vector specifying a subset of observations,
- **weights**: an optional vector of weights,
- **na.action**: a function which indicates what should happen when the data contains 'NA's,
- **point**: the value of truncation (the default is 0),
- **direction**: the direction of the truncation, either "left" (the default) or "right",
- **model, y, x**: logicals. If TRUE the corresponding components of the fit (model frame, response, model matrix) are returned,
- **scaled**: if TRUE, scaled parameters (beta / sigma) are estimated,
- **...**: further arguments.

Details

The model is estimated with the `maxLik` package and the Newton-Raphson method, using analytic gradient and Hessian.

A set of standard extractor functions for fitted model objects is available for objects of class "truncreg", including methods to the generic functions `print`, `summary`, `coef`, `vcov`, `logLik`, `residuals`, `predict`, `fitted`, `model.frame`, and `model.matrix`.

Value

An object of class "truncreg", a list with elements:

- **coefficients**: the named vector of coefficients,
- **vcov**: the variance matrix of the coefficients,
- **fitted.values**: the fitted values,
- **logLik**: the value of the log-likelihood,
the gradient of the log-likelihood at convergence,
the number of observations,
the matched call,
the model terms,
the model frame used (if model = TRUE),
the response vector (if y = TRUE),
the model matrix (if x = TRUE),
the truncation point used,
the truncation direction used,
some information about the estimation (time used, optimization method).

References

See Also

maxLik, mhurdle

Examples

```r
#### Artificial example ####

## simulate a data.frame
set.seed(1071)
n <- 10000
sigma <- 4
alpha <- 2
beta <- 1
x <- rnorm(n, mean = 0, sd = 2)
eps <- rnorm(n, sd = sigma)
y <- alpha + beta * x + eps
d <- data.frame(y = y, x = x)

## truncated response
d$yT <- ifelse(d$y > 1, d$y, NA)

## binary threshold response
```
d$yb <- factor(d$y > 0)

censored response
d$yc <- pmax(1, d$y)

compare estimates for full/truncated/censored/threshold response
fm_full <- lm(y ~ x, data = d)
fm_trunc <- truncreg(yt ~ x, data = d, point = 1, direction = "left")
fm_thresh <- glm(yb ~ x, data = d, family = binomial(link = "probit"))
library("survival")
fm_cens <- survreg(Surv(yc, yc > 1, type = "left") ~ x, data = d, dist = "gaussian")

compare scaled regression coefficients
cbind(
 "True" = c(alpha, beta) / sigma,
 "Full" = coef(fm_full) / summary(fm_full)$sigma,
 "Truncated" = coef(fm_trunc)[1:2] / coef(fm_trunc)[3],
 "Censored" = coef(fm_cens) / fm_cens$scale,
 "Threshold" = coef(fm_thresh)
)

##
Tobin's durable goods data
##

Tobit model (Tobin 1958)
data("tobin", package = "survival")
tobit <- survreg(Surv(durable, durable > 0, type = "left") ~ age + quant,
 data = tobin, dist = "gaussian")

Two-part model (Cragg 1971)
(see "mhurdle" package for a combined solution)
cragg_probit <- glm(factor(durable > 0) ~ age + quant,
 data = tobin, family = binomial(link = "logit"))
cragg_trunc <- truncreg(durable ~ age + quant, data = tobin, subset = durable > 0)

Scaled coefficients
cbind(
 "Tobit" = coef(tobit) / tobit$scale,
 "Binary" = coef(cragg_probit),
 "Truncated" = coef(cragg_trunc)[1:3] / coef(cragg_trunc)[4])

likelihood ratio test and BIC
ll <- c("Tobit" = tobit$loglik[1],
 "Two-Part" = as.vector(logLik(cragg_probit) + logLik(cragg_trunc)))
df <- c(4, 3 + 4)
pchisq(2 * diff(ll), diff(df), lower.tail = FALSE)
-2 * ll + log(nrow(tobin)) * df
Index

*Topic regression
truncreg, 2

coef, 2
coef.truncreg(truncreg), 2

fitted, 2
fitted.truncreg(truncreg), 2

logLik, 2
logLik.truncreg(truncreg), 2

maxLik, 2, 3
model.frame, 2
model.frame.truncreg(truncreg), 2
model.matrix, 2
model.matrix.truncreg(truncreg), 2

predict, 2
predict.truncreg(truncreg), 2
print, 2
print.summary.truncreg(truncreg), 2
print.truncreg(truncreg), 2

residuals, 2
residuals.truncreg(truncreg), 2

summary, 2
summary.truncreg(truncreg), 2

truncreg, 2

vcov, 2
vcov.truncreg(truncreg), 2