Package ‘tsne’
July 15, 2016

Type Package
Title T-Distributed Stochastic Neighbor Embedding for R (t-SNE)
Version 0.1-3
Date 2016-06-04
Author Justin Donaldson <jdonaldson@gmail.com>
Maintainer Justin Donaldson <jdonaldson@gmail.com>
Description A “pure R” implementation of the t-SNE algorithm.
License GPL
LazyLoad yes
NeedsCompilation no
URL https://github.com/jdonaldson/rtsne/
BugReports https://github.com/jdonaldson/rtsne/issues
Repository CRAN
Date/Publication 2016-07-15 20:02:16

R topics documented:

 tsne-package .. 1
tsne ... 2

Index

 tsne-package The tsne-package for multidimensional scaling

Description

 This package contains one function called tsne which contains all the functionality.

Details
Author(s)

Justin Donaldson https://github.com/jdonaldson/rtsne Maintainer: Justin Donaldson (jdonaldson@gmail.com)

References

tsne

The t-SNE method for dimensionality reduction

Description

Provides a simple function interface for specifying t-SNE dimensionality reduction on R matrices or "dist" objects.

Usage

tsne(x, initial_config = NULL, k = 2, initial_dims = 30, perplexity = 30, max_iter = 1000, min_cost = 0, epoch_callback = NULL, whiten = TRUE, epoch=100)

Arguments

- `x`: The R matrix or "dist" object
- `initial_config`: an argument providing a matrix specifying the initial embedding for X. See Details.
- `k`: the dimension of the resulting embedding.
- `initial_dims`: The number of dimensions to use in reduction method.
- `perplexity`: Perplexity parameter. (optimal number of neighbors)
- `max_iter`: Maximum number of iterations to perform.
min_cost

The minimum cost value (error) to halt iteration.

epoch_callback

A callback function used after each epoch (an epoch here means a set number of iterations)

whiten

A boolean value indicating whether the matrix data should be whitened.

epoch

The number of iterations in between update messages.

Details

When the initial_config argument is specified, the algorithm will automatically enter the *final momentum* stage. This stage has less large scale adjustment to the embedding, and is intended for small scale tweaking of positioning. This can greatly speed up the generation of embeddings for various similar X datasets, while also preserving overall embedding orientation.

Value

An R object containing a *ydata* embedding matrix, as well as a the matrix of probabilities *P*

Author(s)

Justin Donaldson (jdonaldson@gmail.com)

References

See Also

-dist

Examples

```r
## Not run:
colors = rainbow(length(unique(iris$Species)))
names(colors) = unique(iris$Species)
ecb = function(x,y){ plot(x,t='n'); text(x,labels=iris$Species, col=colors[iris$Species]) }

# compare to PCA
dev.new()
pca_iris = princomp(iris[,1:4])$scores[,1:2]
plot(pca_iris, t='n')
text(pca_iris, labels=iris$Species, col=colors[iris$Species])

## End(Not run)
```
Index

*Topic package
 tsne-package, 1

dist, 3

tsne, 1, 2

tsne-package, 1