Package ‘waved’

February 20, 2015

Version 1.1-2
Date 2012-11-02
Title Wavelet Deconvolution
Author Marc Raimondo <marcr@maths.usyd.edu.au> and Michael Stewart
 <michael.stewart@sydney.edu.au>
Maintainer Michael Stewart <michael.stewart@sydney.edu.au>
Description Makes available code necessary to reproduce figures and
tables in papers on the WaveD method for wavelet deconvolution
of noisy signals as presented in The WaveD Transform in R,
License GPL
URL http://www.jstatsoft.org/v21/i02
Repository CRAN
Date/Publication 2012-11-07 05:49:20
NeedsCompilation no

R topics documented:

FWaveD ... 1
WaveD .. 3
waved.example .. 5

Index 7

FWaveD

Description
Computes the Forward WaveD Transform.
FWaveD(y, g = 1, L = 3, deg = 3, F = (log2(length(y)) - 1), thr = rep(0, log2(length(y))), SOFT = FALSE)

Arguments

y
Sample of f * g + (Gaussian noise), a vector of dyadic length (i.e. 2^{J-1} where J is the largest resolution level). Here f is the target function, g is the convolution kernel.

g
Sample of g or g + (Gaussian noise), same length as yobs. The default is the Dirac mass at 0.

L
Lowest resolution level; the default is 3.

deg
The degree of the Meyer wavelet, either 1, 2, or 3 (the default).

F
Finest resolution level; the default is the data-driven choice j_1 (see Value below).

thr
A vector of length $F - L + 1$, giving thresholds at each resolution levels $L, L + 1, \ldots, F$; default is maxiset threshold.

SOFT
if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default).

Value

Returns a vector of wavelet coefficients of length n (the same length as y), the last $n/2$ entries are wavelet coefficients at resolution level $J - 1$, where $J = \log_2(n)$; the $n/4$ entries before that are the wavelet coefficients at resolution level $J - 2$, and so on until level L. In addition the 2^L entries are scaling coefficients at coarse level $C = L$.

References

See Also

WaveD

Examples

library(waved)
data=waved.example(TRUE,FALSE)
lidar.w=FWaveD(data$lidar.blur,data$g)
Description

Performs statistical wavelet deconvolution using Meyer wavelet.

Usage

\texttt{WaveD(yobs, g = c(1, rep(0, (length(yobs) - 1))), MC = FALSE, SOFT = FALSE, F = find.j1(g, scale(yobs)), l = 3, deg = 1, eta = sqrt(6), thr = maxithresh(yobs, g, eta), label = "waved")}

Arguments

\texttt{yobs} Sample of \(f * g + \) (Gaussian noise), a vector of dyadic length (i.e. \(2^{J-1} \) where \(J \) is the largest resolution level). Here \(f \) is the target function, \(g \) is the convolution kernel.

\texttt{g} Sample of \(g \) or \(g + \) (Gaussian noise), same length as \texttt{yobs}. The default is the Dirac mass at 0.

\texttt{MC} Option to only return the (fast) translation-invariant WaveD estimate (MC=TRUE) as opposed to the full WaveD output (MC=FALSE, the default), as described below. MC=TRUE recommended for Monte Carlo simulation.

\texttt{SOFT} if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default).

\texttt{F} Finest resolution level; the default is the data-driven choice \(j_1 \) (see Value below).

\texttt{L} Lowest resolution level; the default is 3.

\texttt{deg} The degree of the Meyer wavelet, either 1, 2, or 3 (the default).

\texttt{eta} Tuning parameter of the maxiset threshold; default is \(\sqrt{6} \).

\texttt{thr} A vector of length \(F - L + 1 \), giving thresholds at each resolution levels \(L, L + 1, \ldots, F \); default is maxiset threshold.

\texttt{label} Auxiliary plotting parameter; do not change this.

Value

In the case that MC=TRUE, WaveD returns a vector consisting of the translation-invariant WaveD estimate. In the case that MC=FALSE (the default), WaveD returns a list with components

\texttt{waved} translation invariant WaveD transform; in the case MC=TRUE this is all that is returned.

\texttt{ordinary} ordinary WaveD transform

\texttt{FWaveD} Forward WaveD Transform; see \texttt{FWaveD}.

\texttt{w} alternate name for \texttt{FWaveD}

\texttt{w.thr} thresholded version of \texttt{w}

\texttt{IWaveD} Inverse WaveD Transform
iw
alternate name for IWaveD

s
estimate of the noise standard deviation

j1
estimate of optimal resolution level (for maxiset threshold).

F
Fine resolution level used (may be different to j1).

M
estimate of optimal Fourier frequency (for maxiset threshold).

thr
vector of thresholds used (default is maxiset threshold).

percent
percentage of thresholding per resolution level

noise
noise proxy, wavelet coefficients of the raw data at the largest resolution level, used for estimating noise features.

ps
P-value of the Shapiro-Wilk test for normality applied to the noise proxy.

residuals
wavelet coefficients that have been removed before fine level F.

Author(s)
Marc Raimondo and Michael Stewart

References

See Also
FWaveD

Examples

```r
library(waved)
data=waved.example(TRUE,FALSE)
doppler.wvd=WaveD(data$doppler.noisy, data$g)
summary(doppler.wvd)
```
waved.example

WaveD examples

Description

Generate data sets and figures to illustrate the WaveD function.

Usage

```r
waved.example(pr = TRUE, gr=TRUE)
```

Arguments

- `pr` If `pr=TRUE` (default) uses the same parameters as in the reference paper below. If `pr=FALSE` user level parameter specifications.
- `gr` If `gr=TRUE` (default) text and graphical displays are provided.

Value

- `lidar.noisy` Noisy blurred LIDAR signal (Gaussian noise)
- `lidar.noisyt` Noisy blurred LIDAR signal (Student t_2 noise)
- `doppler.noisy` Noisy blurred Doppler signal (Gaussian noise)
- `doppler.noisyt` Noisy blurred Doppler signal (Student t_2 noise)
- `lidar.blur` Blurred LIDAR signal
- `doppler.blur` Blurred Doppler signal
- `t` Rime vector scaled to [0,1]
- `n` Sample size
- `g` Convolution kernel
- `lidar` LIDAR signal
- `doppler` Doppler signal.
- `seed` Used in set.seed
- `sigma` Noise standard deviation.
- `g.noisy` Convolution kernel plus Gaussian noise.
- `g.noisyt` Convolution kernel plus Student t_2 noise.
- `dip` Degree of Ill-posedness.
- `k.scale` Scale of the convolution kernel

Author(s)

Marc Raimondo
References

See Also

WaveD

Examples

data=waved.example(TRUE,FALSE)
Index

*Topic nonparametric
 FWaveD, 1
 WaveD, 3
 waved.example, 5

FWaveD, 1, 3, 4

WaveD, 2, 3, 6
waved.example, 5