Package ‘wavemulcor’

June 8, 2018

Title Wavelet Routines for Global and Local Multiple Correlation

Version 2.2.1

Description Wavelet routines that calculate single sets of
wavelet multiple correlations (WMC) and cross-correlations (WMCC)
out of n variables.
They can later be plotted in single graphs, as an alternative to trying
to make sense out of several sets of wavelet correlations or
wavelet cross-correlations.
The code is based on the calculation, at each wavelet scale, of the
square root of the coefficient of determination in a linear combination
of variables for which such coefficient of determination is a maximum.
The code provided here is based on the wave.correlation routine in
Brandon Whitcher’s waveslim R package Version: 1.6.4, which in turn is
based on wavelet methodology developed in Percival and Walden (2000) <DOI:10.1017/CBO9780511841040>;
Version 2 incorporates wavelet local multiple correlations (WLMC).
These are like the previous global WMC but consisting in one
single set of multiscale correlations along time. That is, at each time
t, they are calculated by letting a window of weighted wavelet
coefficients around t move along time. Six weight functions are provided.
Namely, the uniform window, Cleveland’s tricube window, Epanechnikov’s
parabolic window, Bartlett’s triangular window and Wendland’s truncated
power window and the Gaussian window.
Version 2.2 incorporates an auxiliary function that calculates local
multiple correlations (LMC). They are calculated by letting move along time
a window of weighted time series values around t. Any of the six weight
functions mentioned above can be used.

License GPL (>= 2)

Depends R (>= 3.4.0), waveslim (>= 1.7.5)

Suggests plot3D

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1
local.multiple.correlation

Description

Produces an estimate of the multiscale local multiple correlation (as defined below) along with approximate confidence intervals.

Usage

local.multiple.correlation(xx, M, window="gauss", p = .975, ymaxr=NULL)

Arguments

xx A list of \(n\) (multiscaled) time series, usually the outcomes of dwt or modwt, \textit{i.e.} \(xx <- \text{list}(v1.modwt.bw, v2.modwt.bw, v3.modwt.bw)\)

M length of the weight function or rolling window.

window type of weight function or rolling window. Six types are allowed, namely the uniform window, Cleveland or tricube window, Epanechnikov or parabolic window, Bartlett or triangular window, Wendland window and the gaussian window. The letter case and length of the argument are not relevant as long as at least the first four characters are entered.

p one minus the two-sided p-value for the confidence interval, \textit{i.e.} the cdf value.

ymaxr index number of the variable whose correlation is calculated against a linear combination of the rest, otherwise at each wavelet level lmc chooses the one maximizing the multiple correlation.
local.multiple.correlation

Details

The routine calculates a time series of multiple correlations out of n variables. The code is based on the calculation of the square root of the coefficient of determination in that linear combination of locally weighted values for which such coefficient of determination is a maximum.

Value

List of four elements:

val: vector with as many rows as observations providing the point estimates for the local multiple correlation.
lo: vector with as many rows as observations providing the lower bounds from the confidence interval.
up: vector with as many rows as observations providing the upper bounds from the confidence interval.
YmaxR: numeric vector giving, at each value in time, the index number of the variable whose correlation is calculated against a linear combination of the rest. By default, \texttt{wlmc} chooses at each value in time the variable maximizing the multiple correlation.

Author(s)

References

Examples

```r
## Based on Figure 4 showing correlation structural breaks in Fernandez-Macho (2017).

library(wavemulcor)
options(warn = -1)

xrand1 <- wavemulcor::xrand1
xrand2 <- wavemulcor::xrand2
N <- length(xrand1)
b <- trunc(N/3)
t1 <- 1:b
t2 <- (b+1):(2*b)
t3 <- (2*b+1):N

wf <- "d4"
M <- N/2*3 #sharper with N/2*4
window <- "gaussian"
```
J <- trunc(log2(N))-3
##
cor1 <- cor(xrand1[t1],xrand2[t1])
cor2 <- cor(xrand1[t2],xrand2[t2])
cor3 <- cor(xrand1[t3],xrand2[t3])
cortex <- paste0(round(100*cor1,0),"--",round(100*cor2,0),"--",round(100*cor3,0))
ts.plot(cbind(xrand1,xrand2),col=c("red","blue"),xlab="time")
xx <- data.frame(xrand1,xrand2)
##
xy.cor <- local.multiple.correlation(xx, M, window=window)
val <- as.matrix(xy.cor$val)
lo <- as.matrix(xy.cor$lo)
up <- as.matrix(xy.cor$up)
YmaxR <- as.matrix(xy.cor$YmaxR)
##
old.par <- par()
Producing heat plot
scale.names <- paste0("","c("2-4","4-8","8-16","16-32","32-64","64-128","128-256","256-512", "512-1024","1024-2048"),")
scale.names <- c(scale.names[1:J],"smooth")
title <- paste("Local Multiple Correlation")
sub <- paste("first",b,"obs:",round(100*cor1,1),"% correlation","middle",b,"obs:",
round(100*cor2,1),"%","rest:",round(100*cor3,1),"%")
xlab <- "time"
ylab <- "correlation"
matplot(1:N,cbind(val,lo,up),
main=title, sub=sub,
xlab=xlab, ylab=ylab, type="l", lty=1, col= c(1,2,2), cex.axis=0.75)
abline(h=0) ## Add Straight horiz and vert Lines to a Plot
#reset graphics parameters
par(old.par)

wave.local.multiple.correlation
Wavelet routine for local multiple correlation
wave.local.multiple.correlation

Description

Produces an estimate of the multiscale local multiple correlation (as defined below) along with approximate confidence intervals.

Usage

wave.local.multiple.correlation(xx, M, window="gauss", p = .975, ymaxr=NULL)

Arguments

xx A list of \(n \) (multiscaled) time series, usually the outcomes of dwt or modwt, \emph{i.e.} xx <- list(v1.modwt.bw, v2.modwt.bw, v3.modwt.bw)

M length of the weight function or rolling window.

window type of weight function or rolling window. Six types are allowed, namely the uniform window, Cleveland or tricube window, Epanechnikov or parabolic window, Bartlett or triangular window, Wendland window and the gaussian window. The letter case and length of the argument are not relevant as long as at least the first four characters are entered.

p one minus the two-sided p-value for the confidence interval, \emph{i.e.} the cdf value.

ymaxr index number of the variable whose correlation is calculated against a linear combination of the rest, otherwise at each wavelet level wlmc chooses the one maximizing the multiple correlation.

Details

The routine calculates one single set of wavelet multiple correlations out of \(n \) variables that can be plotted in in either single heatmap or \(J \) line graphs (the former is usually the best graphic option but the latter is useful if confidence intervals are explicitly needed), as an alternative to trying to make sense out of \(n(n-1)/2 \). \([JxT] \) sets of local wavelet correlations. The code is based on the calculation, at each wavelet scale, of the square root of the coefficient of determination in that linear combination of locally weighted wavelet coefficients for which such coefficient of determination is a maximum. The code provided here is based on the wave.multiple.correlation routine in this package which in turn is based on the wave.correlation routine in Brandon Whitcher's \texttt{waveslim} \texttt{R} package Version: 1.6.4, which in turn is based on wavelet methodology developed in Percival and Walden (2000); Gençay, Selçuk and Whitcher (2001) and others.

Value

List of four elements:

\texttt{val} matrix with as many rows as observations and as many columns as levels in the wavelet transform object providing the point estimates for the wavelet local multiple correlation.

\texttt{lo} matrix with as many rows as observations and as many columns as levels in the wavelet transform object providing the lower bounds from the confidence interval.
wave.local.multiple.correlation

up: matrix with as many rows as observations and as many columns as levels in the wavelet transform object providing the upper bounds from the confidence interval.

YmaxR: numeric vector giving, at each wavelet level, the index number of the variable whose correlation is calculated against a linear combination of the rest. By default, \texttt{wlmc} chooses at each wavelet level the variable maximizing the multiple correlation.

Note

Needs \textit{waveslim} package to calculate \textit{dwt} or \textit{modwt} coefficients as inputs to the routine (also for data in the example).

Author(s)

References

Examples

```r
## Based on Figure 4 showing correlation structural breaks in Fernandez-Macho (2017).

library(wavemulcor)
library(plot3D)
options(warn = -1)

data(xrand)
N <- length(xrand1)
b <- trunc(N/3)
t1 <- 1:b
t2 <- (b+1):(2*b)
t3 <- (2*b+1):N

wf <- "d4"
M <- N/2^3 # sharper with N/2^4
window <- "gaussian"

J <- trunc(log2(N))-3

# #############################################################################

cor1 <- cor(xrand1[t1],xrand2[t1])
cor2 <- cor(xrand1[t2],xrand2[t2])
cor3 <- cor(xrand1[t3],xrand2[t3])
```
```r
cortex <- paste0(round(100*cor1, 0), "-", round(100*cor2, 0), "-", round(100*cor3, 0))

ts.plot(cbind(xrand1, xrand2), col=c("red", "blue"), xlab="time")

xrand1.modwt <- modwt(xrand1, wf, J)
xrand1.modwt.bw <- brick.wall(xrand1.modwt, wf)

xrand2.modwt <- modwt(xrand2, wf, J)
xrand2.modwt.bw <- brick.wall(xrand2.modwt, wf)

xx <- list(xrand1.modwt.bw, xrand2.modwt.bw)

# producing heat plot

xy.mulcor <- wave.local.multiple.correlation(xx, M, window=window)

val <- as.matrix(xy.mulcor$val)
lo <- as.matrix(xy.mulcor$lo)
up <- as.matrix(xy.mulcor$up)
YmaxR <- as.matrix(xy.mulcor$YmaxR)

old.par <- par()

# producing line plots with confidence intervals

colnames(val)[1:J] <- paste0("level", 1:J)

par(mfrow=c(3,2), las=1, pty="m", mar=c(2,3,1,0)+.1, oma=c(1.2,1.2,0,0))

for(i in 1:J) {
  matplot(1:n, val[,i], type="l", lty=1, ylim=c(-1,1), xaxt="n",
           xlab="", ylab="", main=colnames(val)[i])
  if(i<3) {axis(side=1, at=seq(10,N,by=10))}
}
```

wave.multiple.correlation

Wavelet routine for multiple correlation

Description

Produces an estimate of the multiscale multiple correlation (as defined below) along with approximate confidence intervals.

Usage

wave.multiple.correlation(xx, N, p = 0.975, ymaxr=NULL)

Arguments

xx A list of n (multiscaled) time series, usually the outcomes of dwt or modwt, i.e. xx <- list(v1.modwt.bw, v2.modwt.bw, v3.modwt.bw)
N length of the time series
p one minus the two-sided p-value for the confidence interval, i.e. the cdf value.
ymaxr index number of the variable whose correlation is calculated against a linear combination of the rest, otherwise at each wavelet level wmc chooses the one maximizing the multiple correlation.

Details

The routine calculates one single set of wavelet multiple correlations out of n variables that can be plotted in a single graph, as an alternative to trying to make sense out of n(n - 1)/2 sets of wavelet correlations. The code is based on the calculation, at each wavelet scale, of the square root of the coefficient of determination in the linear combination of variables for which such coefficient of determination is a maximum. The code provided here is based on the wave.correlation routine in Brandon Whitcher's waveslim R package Version: 1.6.4, which in turn is based on wavelet methodology developed in Percival and Walden (2000); Gençay, Selçuk and Whitcher (2001) and others.
wave.multiple.correlation

Value

List of two elements:

- *xy.mulcor*: matrix with as many rows as levels in the wavelet transform object. The first column provides the point estimate for the wavelet multiple correlation, followed by the lower and upper bounds from the confidence interval.

- *YmaxR*: numeric vector giving, at each wavelet level, the index number of the variable whose correlation is calculated against a linear combination of the rest. By default, *wmc* chooses at each wavelet level the variable maximizing the multiple correlation.

Note

Needs *waveslim* package to calculate *dwt* or *modwt* coefficients as inputs to the routine (also for data in the example).

Author(s)

References

Examples

```r
## Based on data from Figure 7.8 in Gencay, Selcuk and Whitcher (2001)
## plus one random series.

library(wavemulcor)
data(exchange)
returns <- diff(log(as.matrix(exchange)))
returns <- ts(returns, start=1970, freq=12)
wf <- "d4"
J <- 6

demusd.modwt <- modwt(returns[, "DEM.USD"], wf, J)
demusd.modwt.bw <- brick.wall(demusd.modwt, wf)
jpyusd.modwt <- modwt(returns[, "JPY.USD"], wf, J)
jpyusd.modwt.bw <- brick.wall(jpyusd.modwt, wf)
rand.modwt <- modwt(rnorm(length(returns[, "DEM.USD"])), wf, J)
rand.modwt.bw <- brick.wall(rand.modwt, wf)

xx <- list(demusd.modwt.bw, jpyusd.modwt.bw, rand.modwt.bw)

Lst <- wave.multiple.correlation(xx, N = length(xx[[1]][[1]]))
returns.modwt.cor <- Lst$xy.mulcor[[1]:J,]
YmaxR <- Lst$YmaxR
```
exchange.names <- c("DEM.USD", "JPY.USD", "RAND")

Producing plot
par(mfrow=c(1,1), las=0, mar=c(5,4,2,1)+.1)
matplot(2^(0:(J-1)), returns.modwt.cor[-(J+1),], type="b",
 log="x", pch="*", xaxt="n", lty=1, col=c(1,4,4),
 xlab="Wavelet Scale", ylab="Wavelet Multiple Correlation")
axis(side=1, at=2^(0:7))
abline(h=0)
text(2^(0:7), min(returns.modwt.cor[-(J+1),])-0.03,
 labels=exchange.names[ymaxr], adj=0.5, cex=.5)

wave.multiple.cross.correlation

Wavelet routine for multiple cross-correlation

Description

Produces an estimate of the multiscale multiple cross-correlation (as defined below).

Usage

wave.multiple.cross.correlation(xx, lag.max = NULL, ymaxr = NULL)

Arguments

- **xx**: A list of \(n \) (multiscaled) time series, usually the outcomes of dwt or modwt, i.e. \(xx <- \text{list(v1.modwt.bw, v2.modwt.bw, v3.modwt.bw)} \)
- **lag.max**: maximum lag. If not set, it defaults to half the square root of the length of the original series.
- **ymaxr**: index number of the variable whose correlation is calculated against a linear combination of the rest, otherwise at each wavelet level wmc chooses the one maximizing the multiple correlation.

Details

The routine calculates one single set of wavelet multiple cross-correlations out of \(n \) variables that can be plotted as one single set of graphs (one per wavelet level), as an alternative to trying to make sense out of \(n(n-1)/2 \cdot J \) sets of wavelet cross-correlations. The code is based on the calculation, at each wavelet scale, of the square root of the coefficient of determination in a linear combination of variables that includes a lagged variable for which such coefficient of determination is a maximum.
wave.multiple.cross.correlation

Value

List of two elements:

- `xy.mulcor`: matrix with as many rows as levels in the wavelet transform object. The columns provide the point estimates for the wavelet multiple cross-correlations at different lags.
- `YmaxR`: numeric vector giving, at each wavelet level, the index number of the variable whose correlation is calculated against a linear combination of the rest. By default, `wmcc` chooses at each wavelet level the variable maximizing the multiple correlation.

Note

Needs `waveslim` package to calculate `dwt` or `modwt` coefficients as inputs to the routine (also for data in the example).

Author(s)

References

Examples

```r
## Based on data from Figure 7.9 in Gencay, Selcuk and Whitcher (2001)
## plus one random series.

library(wavemulcor)
data(exchange)
returns <- diff(log(exchange))
returns <- ts(returns, start=1970, freq=12)
wf <- "d4"
j <- 6
lmax <- 36
n <- dim(returns)[1]
demusd.modwt <- modwt(returns[,"DEM.USD"], wf, J)
demusd.modwt.bw <- brick.wall(demusd.modwt, wf)
jpyusd.modwt <- modwt(returns[,"JPY.USD"], wf, J)
jpyusd.modwt.bw <- brick.wall(jpyusd.modwt, wf)
rand.modwt <- modwt(rnorm(length(returns[,"DEM.USD"])), wf, J)
rand.modwt.bw <- brick.wall(rand.modwt, wf)

##xx <- list(demusd.modwt.bw, jpyusd.modwt.bw)
xx <- list(demusd.modwt.bw, jpyusd.modwt.bw, rand.modwt.bw)

Lst <- wave.multiple.cross.correlation(xx, lmax)
returns.cross.cor <- as.matrix(Lst$xy.mulcor[1:J,])
```
Correlation structural breaks data

Description
Simulated data showing correlation structural breaks in Figure 4 of Fernández-Macho (2017).

Usage
data("xrand")

Format
A data frame with 512 observations on the following 2 variables.

xrand1 a numeric vector
xrand2 a numeric vector
Details

$xrand1[t]$ and $xrand2[t]$ are highly correlated at low frequencies (long timescales) but uncorrelated at high frequencies (short timescales). However, during a period of time spanning the second third of the sample ($T/3 < t < 2T/3$) that behavior is reversed so that data become highly correlated at short timescales but uncorrelated at low frequencies.

References

Examples

data(xrand)

maybe str(xrand) ; plot(xrand) ...

xrand1

Correlation structural breaks variable 1

Description

Simulated data showing correlation structural breaks in Figure 4 of Fernández-Macho (2017).

Usage

data("xrand")

Format

A data frame with 512 observations on 1 variables.

xrand1 a numeric vector

Details

$xrand1[t]$ and $xrand2[t]$ are highly correlated at low frequencies (long timescales) but uncorrelated at high frequencies (short timescales). However, during a period of time spanning the second third of the sample ($T/3 < t < 2T/3$) that behavior is reversed so that data become highly correlated at short timescales but uncorrelated at low frequencies.

References

Examples

data(xrand)

maybe str(xrand) ; plot(xrand) ...
Description
Simulated data showing correlation structural breaks in Figure 4 of Fernández-Macho (2017).

Usage
data("xrand")

Format
A data frame with 512 observations on 1 variables.

\begin{itemize}
 \item xrand2 a numeric vector
\end{itemize}

Details

\textit{xrand1}[t] and \textit{xrand2}[t] are highly correlated at low frequencies (long timescales) but uncorrelated at high frequencies (short timescales). However, during a period of time spanning the second third of the sample \((T/3 < t < 2T/3)\) that behavior is reversed so that data become highly correlated at short timescales but uncorrelated at low frequencies.

References

Examples

data(xrand)

\# maybe \texttt{str(xrand)} ; \texttt{plot(xrand)} ...

Index

*Topic **correlation**
 wave.multiple.correlation, 8
*Topic **cross-correlation**
 wave.multiple.cross.correlation, 10
*Topic **datasets**
 xrand, 12
 xrand1, 13
 xrand2, 14
*Topic **local correlation**
 local.multiple.correlation, 2
 wave.local.multiple.correlation, 4
*Topic **local regression**
 local.multiple.correlation, 2
 wave.local.multiple.correlation, 4
*Topic **moving regression**
 local.multiple.correlation, 2
 wave.local.multiple.correlation, 4
*Topic **multivariate**
 local.multiple.correlation, 2
 wave.local.multiple.correlation, 4
 wave.multiple.correlation, 8
 wave.multiple.cross.correlation, 10
*Topic **statistics**
 local.multiple.correlation, 2
 wave.local.multiple.correlation, 4
 wave.multiple.correlation, 8
 wave.multiple.cross.correlation, 10
*Topic **wavelet**
 wave.local.multiple.correlation, 4
 wave.multiple.correlation, 8
 wave.multiple.cross.correlation, 10

lmc (local.multiple.correlation), 2
local.multiple.correlation, 2
wave.local.multiple.correlation, 4
wave.multiple.correlation, 8
wave.multiple.cross.correlation, 10
wlm (wave.local.multiple.correlation), 4
wmc (wave.multiple.correlation), 8
wmcc (wave.multiple.cross.correlation), 10
xrand, 12
xrand1, 13
xrand2, 14