Package ‘xgobi’

February 20, 2015

Version 1.2-15
Date 2012-11-01
Title Interface to the XGobi and XGvis programs for graphical data analysis
Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Author Martin Maechler, originally packaged for R by Kurt Hornik
<Kurt.Hornik@R-project.org>, based on the S code in the XGobi distribution. Windows port based on this and earlier work by Brian Ripley <ripley@stats.ox.ac.uk>.
Description Interface to the XGobi and XGvis programs for graphical data analysis.
SystemRequirements The standalone program xgobi must be installed additionally, see file README, or INSTALL.windows under Windows
NOTE XGobi and XGVis have been superseded by ggobi and ggvis, available from www.ggobi.org. The R package Rggobi can also be obtained there.
License file LICENSE
Repository CRAN
Date/Publication 2012-11-01 12:14:25
NeedsCompilation no
License_restricts_use no

R topics documented:

laser ... 2
morsecodes .. 2
PaulKAI .. 3
quadplot ... 4
reggeom ... 5
xgobi .. 8
xgvis ... 11

Index 14
laser
Bellcore Experimental Laser Data

Description
This data came from an investigation of an experimental laser at Bellcore. It was a tunable laser, in the sense that both its wavelength and power output were controllable.

Usage
data(laser)

Format
A data frame with observations on the variables If and Ir (the currents applied to the front and rear of the laser), and power and lambda (the output power and wavelength).

Details
Rotation helped the experimental physicists to characterize the laser, which turned out not to be a very good one, due to its unstable operating region.
This data initially came to the statistics research group when Janette Cooper asked Paul Tukey to help her analyze the data she had collected to describe the laser.

morsecodes
Rothkopf Morse Code Data

Description
A standard data set for Multidimensional Scaling (MDS) obtained by Rothkopf based on the confusion rates observed by exposing subjects to pairs of morse codes.

Usage
data(morsecodes)

Format
9 data sets used for analyzing the data in XGvis and XGobi.

```r
morsecodes.raw  36 x 36 raw data of confusion rates
morsecodes.dist  36 x 36 dissimilarity matrix
morsecodes.pos  36 x 10 initial configuration
morsecodes.colors  36 point colors
morsecodes.glyphs  36 point glyphs
morsecodes.lines  33 lines
```
Details

The raw data from the XGvis directory may be read as
```
mc.raw <- as.matrix(read.table("...xgobi/data_xgvis/morsecodes.raw"))
dimnames(mc.raw) <- NULL; storage.mode(mc.raw) <- "integer"
morsecodes.raw <- mc.raw.
```

The *dist matrix is produced from the raw data by
```
mc.sim <- (mc.raw + t(mc.raw))/2; ds <- diag(mc.sim)
morsecodes.dist <- rep(ds,36) + rep(ds,rep(36,36)) - 2*mc.sim,
i.e., \( d_{ij} := s_{ii} + s_{jj} - 2s_{ij} \).
```

Source

References

Examples

```
data(morsecodes)
ls.str(pat="\"morsecode\""

# real row names
(mc.row <- paste(morsecodes.row[,1], morsecodes.row[,2]))[1:8]

image(1:36, 1:36, morsecodes.raw, main="\"morsecodes\' raw confusion rates\"
text(1:36,1:36, morsecodes.row[,1])

# help(xgvis) for running multidimensional scaling (MDS) and XGobi on these
```

Description

These are the numbers of sentences which have 0, 1, 2, or 3 and more (3+) occurrences of the greek word “kai” (which means “and” and more) in 10 epistles of Apostel Paul, see the reference.
Usage

data(PaulKAI)

Format

A 10 × 4 matrix with proper dimnames, see the examples below.

Note

One theological question is about the authorship of “Hebrews” (the last epistle in our matrix), so one might be interested in its “kai pattern” compared to, e.g. “Romans”.

References

Morton, A. Q. (1965)
The authorship of Greek prose (with discussion).

Posted to S-news by Jim Ramsay, see quadplot.

See Also

quadplot for which this data set was used as illustration.

Examples

data(PaulKAI)
rownames(PaulKAI) # the ten epistles researched:
[1] "Rom" "Col" "Co2" "Gal" "Phi" "Col" "Th1" "Ti1" "Ti2" "Heb"
PaulKAI # the 10 x 4 count table
mosaicplot(PaulKAI)
quadplot(PaulKAI)

quadplot

Tetrahedral Display for Four-Category Proportions using XGobi

Description

Four-category proportions are visualized as points inside a tetrahedron, using xgobi.

Usage

quadplot(mat4,
 pointlabs = rownames(mat4),
 vertexlabs = paste(1:4),
 normalize = median(abs(c(mat4))) > 1)
Arguments

- matT: matrix with 4 columns containing the data
- pointlabs: character array of labels for rows of data; by default it is the row number as a string.
- vertexlabs: character array of length 4 of labels for the vertices; by default it is the column number as a string.
- normalize: logical variable indicating whether or not to force each row of data to have unit sum before display, default is false.

Details

The set of all four-category proportions, or, alternatively, probability measures on finite probability fields with 4 atomic events, is the set of nonnegative 4-vectors whose components sum up to 1. The function quadplot uses xgobi to represent such vectors graphically as points inside a tetrahedron with height 1: the four components of the vector are the distances of the point to each of the sides of the tetrahedron. Each vertex of the tetrahedron corresponds to the degenerate probability distribution in which one of the atomic events has probability 1 and the others have probability 0. The labels of these vertices indicate the event which has probability 1.

Author(s)

(port to R) Hans Ehrbar <ehrbar@econ.utah.edu> and Martin Maechler (with explicit permission from Jim Ramsay)

References

quadplot was posted by Jim Ramsay <ramsay@psych.mcgill.ca> to S-news on Fri, 21 May 1993 14:03:15 EDT.

Examples

data(PaulKAI)
quadplot(PaulKAI, normalize = TRUE)

Description

Using XGobi for visualising the geometry of regression with two explanatory variables.

The function reggeom has exactly the same arguments as xgobi(. .), and it simply calls xgobi, but it has different default values for the arguments than the defaults of xgobi itself.
Usage

```r
reggeom(matrx = matrix(c(0, 5780, -1156, 3468, 3468, 3468,
                          -867, 4335, 0, 0, -612, 4080, 5440, 2652, 3468, 3420, 3468,
                          0, 0, 4624, 3468, 3468, 0, 3468, 0, 3468, 4624, 2448, 1020,
                          1360, 3264, 3264, 3456, 3456, 0, 0, 0, 4624, 0, 0, 0, 0,
                          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 17, ncol = 3),
  collab = c("U", "V", "W"),
  rowlab = c("o", "x1", "x2", "y", letters[2:8], "k", "m", "p", "q", "r", "s"),
  colors = NULL, glyphs = NULL, erase = NULL,
  lines = matrix(c(1, 6, 8, 1, 11, 7, 1, 1, 5, 6,
                   6, 15, 17, 8, 5, 9, 1, 9, 10,
                   6, 8, 2, 11, 7, 3, 4, 5, 4, 4,
                   15, 17, 5, 5, 9, 7, 9, 10, 3),
                   nrow = 19, ncol = 2),
  linecolors = c("red", "yellow", "yellow", "yellow", "yellow",
                 "yellow", "orchid", "green", "green", "red", "skyblue",
                 "skyblue", "skyblue", "white", "white", "white", "slateblue",
                 "slateblue", "slateblue"),
  resources = c("*showLines: True", "*showAxes: False", "*showPoints: False",
                "*XGobi*PlotWindow.height: 500",
                "*XGobi*PlotWindow.width: 500", "*XGobi*VarPanel.width: 50"),
  title = "Regression Geometry", vgroups = c(1, 1, 1), std = "msd",
  nlinkable = NULL, subset = NULL, display = NULL)
```

Arguments

`matrx` the default dataset is a matrix with three columns. The rows represent the dependent and the two independent variables, as well as fitted values and residuals in the regression on one or both regressors, and other auxiliary variables. Since the matrix has three columns, each variable is represented as a vector in 3-dimensional space.

collab column labels for `matrx`, by default "U", "V", and "W", not very meaningful since the columns represent oblique directions in n-dimensional space.

`rowlab` character vector of labels for the variables; by default, "x1" and "x2" for the independent and "y" for the dependent variable, "o" for the origin, and other letters for the auxiliary variables.

colors as in xgobi all points are of the same color.

glyphs as in xgobi all points are drawn with the same glyph.

`erase` as in xgobi no points will be erased.

`lines` the default lines argument displays some of the data in `matrx` as straight lines. The user may want to substitute different lines in order to emphasize or de-emphasize certain relationships, as in the example given below.

`linecolors` The default line colors are:

- **purple** for the dependent variable,
- **yellow** for the two independent variables,
- **green** for fitted values and residuals in the full regression,
reggeom

- **red** for fitted values and residuals in the regression on the first independent variable only, and
- **light blue**, **dark blue**, and **white** for auxiliary lines.

resources by default, points and axes are not shown; only lines are.
title by default, "Regression Geometry"
vgroups by default, all three variables are in the same group.
std by default, the view is centered on the mean of the data.
nlinkable, subset, display the same as in **xgobi**.

Details

If called without arguments, **reggeom** loads a dataset which represents the geometry of regression with two explanatory variables. The idea is to place the dataset into the rotation view in order to get an intuition of the geometry involved. **reggeom** should only then be called with arguments if specific built-in defaults must be overridden.

The explanatory variables are \(x_1=(5,0,0) \) and \(x_2=(-1,4,0) \), and the target (dependent) variable is \(y=(3,3,4) \). However all coordinates are multiplied by 1156, with the effect that all the points passed as arguments to **xgobi** have integer coordinates.

Value

As in the call of **xgobi**, the UNIX status upon completion, i.e. 0 if ok.

Side Effects

As in **xgobi**.

author

Hans Ehrbar <ehrbar@econ.utah.edu>

References

See Also

xgobi
Examples

reggeom()

The arguments given in this example are modifications of the default,
some lines dropped, some added, some line colors changed,
in order to emphasize the geometry of backfitting.
reggeom(
 lines = cbind(c(1,6,8,11,7,1,1,6,6,15,17,8,5,9, 5,6,14,15,16,14,15,5),
 c(6,8,2,11,7,3,4,5,4,15,17,5,5,9,7,11,14,15,16,17,4,4,4)),
 linecolors=c("red", rep("yellow",5), "orchid", "green",
 "slateblue", rep("skyblue",3), rep("white",3), "skyblue",
 rep("red",4), rep("slateblue", 2), "green"),
 title="Regression Geometry - Backfitting")

xgobi

XGobi: Dynamic Graphics for Data Analysis

Description

Dynamic graphics, including brushing, rotation, grand tour, projection pursuit, slicing. Most effectively used when called more than once on same data, which then allows linked plots. Brushing with several glyphs and colors is supported. (On monochrome displays, only glyphs can be used.)

Usage

```r
xgobi(matrx,  
collab = colnames(matrx),
rowlab = rownames(matrx),
colors = NULL, glyphs = NULL, erase = NULL,
lines = NULL, linecolors = NULL, resources = NULL,
title = deparse(substitute(matrx)),
vgroups = NULL, std = "mmx",
nlinkable = NULL, subset = NULL, display = NULL,
multi = TRUE,
keep = FALSE, fprefix = "xgobi-"

xgobi.colors.default
```

Arguments

- `matrx` numeric \(n \times p \) matrix or data.frame.
- `collab` character vector of \(p \) column labels (defaulting to those of `matrx`); if no default exists, `xgobi` constructs its own ("Var1", ...).
- `rowlab` character vector of \(n \) row labels (defaulting to those of `matrx`); if no default exists, `xgobi` constructs its own (numbers 1:n).
- `colors` Optional character vector, used to supply initial point colors to be used; the default is that all points are the same color. Details, see below.
glyphs Optional integer vector, used to supply glyphs to be used on startup; the default is that all points are drawn with the same glyph. Glyphs have been coming as six different types (plus, X, open and filled rectangle, open and filled circle) in five different sizes, plus “point”, giving 31 available glyphs.

erase Optional integer vector of length equal to the number of rows in the data and composed of 1s and 0s. A 1 in position i specifies that point i should be erased. The default is a vector of 0s.

lines Optional integer matrix, n by 2, which specifies by row number pairs of points to be connected by line segments. The default connecting line matrix connects each point to the one that follows it in the data; that is, (1 2), (2 3), (3 4), ..., (n-1, n).

linecolors Optional integer vector, of length n where n is the number of lines specified by the ‘lines’ argument. It is used to supply line colors to be used on startup; the default is for all the lines to be drawn in the standard foreground color.

resources Optional character vector created by clicking on the “Save Resources” button in XGobi (if this XGobi was initiated during an R session).

title Optional character string which defines the -title argument used by X. Defaults to the name (expression) of the current matrx argument. See documentation for xgobi, or for X.

groups Optional integer vector, used to assign columns to groups for transformation and axis scaling. This vector must contain one integer for each variable. Columns to be grouped together should share the same integer. Default is the vector 1:ncol(matrx).

std Optional string; which standardization of view to use. Default is "mmx", minimum-maximum scaling, in which the view is centered at the midpoint of the data, and all the data fits inside the plotting window. Alternatives are "msd", in which the plot is centered at the mean of the data, or "mmd" in which the plot is centered at the median. In those two cases, the view is standardized using the largest distance.

nlinkable Optional integer scalar, the number of rows to be used in linking of brushing and identification; the default is for all rows to be used. This feature can be used to link ordinary scatterplots with plots that have some decorations requiring additional points, such as clustering trees.

subset Optional integer scalar, the number of rows to be included in the initial display. That is, all data will be read in, but an initial random sample will be drawn for display. Use the Subset panel on the Tools Menu to select a new subset during the session.

display Optional character string, identifying the monitor on which to display the xgobi window. The default is "machine:0.0" where machine is the name of the user’s workstation. See documentation for xgobi or for X.

multi logical, indicating if the xgobi process should be run multi-tasking with R. If true, control returns to the R command prompt after 3 seconds.

keep logical, indicating if the temporary files should be kept (e.g. for calling the xgobi program outside R).

fprefix character string for the file name prefix to be used for temporary files.
Details

\texttt{xgobi.colors.default} is the vector of the ten default brush colors from which to choose by the \texttt{colors} argument.

Note that this set of default brush colors can be modified by a (site or user) specific ‘app-defaults’ file, or directly by \texttt{xgobi(*, resources = ...), redefining \texttt{*brushColor n} (with \texttt{n} from \texttt{0:9}).

A warning is issued if \texttt{colors} contains strings not in the \texttt{brushColor resources}.

Value

The UNIX status upon completion, i.e. 0 if ok.

Side Effects

The \texttt{R} function \texttt{xgobi} executes a call to the C program of the same name, an interactive statistical graphics program which runs under the X Window System, and returns control of the \texttt{R} command line to the user.

\texttt{XGobi} can be used to create vectors of brushing information and rotation coefficients; see the documentation for \texttt{XGobi} for details.

CONTACT

(xgobi main program): D. F. Swayne <dfs@research.att.com>

Author(s)

of \texttt{R} port: Kurt Hornik and Martin Maechler <maechler@stat.math.ethz.ch>

References

\texttt{http://www.research.att.com/areas/stat/xgobi/},
\texttt{http://www.public.iastate.edu/~dicook/}

See Also

\texttt{xgvis} which uses \texttt{xgobi} for interactive MDS.

Examples

data(laser)
xgobi(laser)

\texttt{Xdir <- file.path(dirname(tempfile()), "xgobi")}

\texttt{dir.create(Xdir)}
xgobi(laser, colors = xgobi.colors.default[\texttt{c(1,3,5,7,9,10)[as.factor(laser$Ir)]}],
glyphs = \texttt{c(23,8)[1+(laser$lambda > 1576)]},
keep = \texttt{TRUE}, fprefix="xgobi/L-"
file.info(list.files(Xdir, full=\texttt{TRUE})[, \texttt{c(1,3,4)]} # >> Files "L-laser..."
remove manually when finally unused:
R interface to XGvis, an interactive multidimensional scaling (MDS) program that consists of a control panel to manipulate the parameters of the MDS stress function and an \texttt{xgobi} window for data display. It can be used either for visualization of dissimilarity data, for dimension reduction, or for graph layout. Graph layout is usually done in 2D, but \texttt{xgvis} allows layouts in arbitrary dimensions, 3D being the default. It permits missing values, which can be used to implement multidimensional unfolding.

Usage

```r
xgvis(dmat = NULL, 
      edges = NULL, 
      pos = NULL, 
      rowlab = colnames(dmat), 
      colors = NULL, glyphs = NULL, 
      erase = NULL, lines = NULL, linecolors = NULL, 
      resources = NULL, display = NULL, 
      multi = TRUE, 
      keep = FALSE, fprefix = "xgvis-")
```

Arguments

- **dmatt** numeric $n \times n$ distance matrix.
- **edges** $n \times 2$ or $n \times 3$ matrix of specifications for the pattern of line segments which connect pairs of points. Must contain at least two numbers per line. The first two numbers represent the row numbers of the two points that should be connected. (This is exactly like the structure of a the \texttt{lines} argument of \texttt{xgobi}.) In addition, if a third number is present, it is taken to be an edge weight.

 If \texttt{edges} is specified and \texttt{dmatt} not, then the distance matrix is computed from \texttt{edges}, with each edge representing a distance of one.

- **pos** Starting positions: an $n \times p$ matrix. If \texttt{pos} is specified and \texttt{dmatt} not, the distance matrix is computed from \texttt{pos}.

- **rowlab** character vector of n row labels (defaulting to those of \texttt{dmatt}); if no default exists, \texttt{xgobi} constructs its own (numbers $1:n$).

- **colors** optional character vector supplying initial point colors to be used; see \texttt{xgobi}.

- **glyphs** integer vector, used to supply glyphs to be used on startup, see \texttt{xgobi}.
erase

Optional integer vector of length equal to the number of rows in the data and composed of 1s and 0s. A 1 in position i specifies that point i should be erased. The default is a vector of 0s.

lines

Optional integer matrix, n by 2, which specifies by row number pairs of points to be connected by line segments. If lines are specified, then the edges is used to create the distance matrix but lines is used to draw the edges.

linecolors

Optional integer vector, of length n where n is the number of lines specified by the lines argument. It is used to supply line colors to be used on startup; the default is for all the lines to be drawn in the standard foreground color.

resources

Optional character vector created by clicking on the “Save Resources” button in XGobi.

display

Optional character string, identifying the monitor on which to display the xgvis window. The default is "machine:0.0" where machine is the name of the user’s workstation. See documentation for X.

multi

logical, indicating if the xgobi process should be run multi-tasking with R. If true, control returns to the R command prompt after 3 seconds.

keep

logical, indicating if the temporary files should be kept (e.g. for calling the xgobi program outside R)

fprefix

character string for the file name prefix to be used for temporary files.

Value

The UNIX status upon completion, i.e. 0 if ok.

Side Effects

The xgvis R function executes a call to the C program of the same name, and returns control of the R command line to the user.

CONTACT

D. F. Swayne <dfs@research.att.com>

Author(s)

of R port: Kurt Hornik and Martin Maechler <maechler@stat.math.ethz.ch>

References

http://www.research.att.com/areas/stat/xgobi/,
http://www.public.iastate.edu/~dicook/

See Also

xgobi.
Examples

data(morsecodes) ## from the XGobi/XGvis data, see ?morsecodes
mc.row <- paste(morsecodes.row[,1],morsecodes.row[,2])

xgvis(dmat = morsecodes.dist,
pos = morsecodes.pos,
rowlab = mc.row,
colors = morsecodes.colors,
glyphs = morsecodes.glyphs,
lines = morsecodes.lines,
linecolors = morsecodes.linecolors)

2) Show lines by hitting "l" with the mouse over the plot.
3) Examine morsecode labels by hitting "i" and mousing around on the plot.
3b) Press "r" (on the plot) to switch 3D rotation in xgobi.
4) Run MDS in 3D by clicking "Run MDS" (in xgvis).
5) Speed up the optimization by increasing the "Stepsize" with the slider.
The "Stress function" value may go as low as 0.1925 (M).
6) When the optimization calms down, click "Run MDS" to toggle MDS off.
7) Rotate the MDS configuration in 3D (by "r" with mouse over plot).
8) Increase the rotation speed with the slider in the top left and
control the rotation direction by dragging the mouse on the plot.
9) You can check out the initial configuration by

In order to have no color warning :
Mcolors <- unique(morsecodes.colors)
(Mcolors <- paste("xbrush.Color", 0:(length(Mcolors)-1)," ", Mcolors, sep=""))

xgobi(morsecodes.pos, collab = morsecodes.col, rowlab = mc.row,
colors = morsecodes.colors,
glyphs = morsecodes.glyphs,
lines = morsecodes.lines,
linecolors = morsecodes.linecolors,
resources= c("showlines: True", Mcolors))

This XGobi window will be linked with
the XGvis window for glyph-color brushing and labeling.
Index

*Topic datasets
 laser, 2
 morsecodes, 2
 PaulKAI, 3
*Topic dynamic
 quadplot, 4
 reggeom, 5
 xgobi, 8
 xgvis, 11
*Topic hplot
 quadplot, 4
*Topic multivariate
 xgobi, 8
 xgvis, 11
dimnames, 4
laser, 2
morsecodes, 2
PaulKAI, 3
quadplot, 4, 4
reggeom, 5
xgobi, 4, 5, 7, 8, 8, 11, 12
xgvis, 10, 11