BTdecayLasso: Bradley-Terry Model with Exponential Time Decayed Log-Likelihood and Adaptive Lasso

We apply Bradley-Terry Model to estimate teams' ability in paired comparison data. Exponential Decayed Log-likelihood function is applied for dynamic approximation of current rankings and Lasso penalty is applied for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.

Version: 0.1.0
Imports: optimr, ggplot2, stats
Published: 2018-06-27
Author: Yunpeng Zhou [aut, cre], Jinfeng Xu [aut]
Maintainer: Yunpeng Zhou <michael.zhou.hku at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: README NEWS
CRAN checks: BTdecayLasso results


Reference manual: BTdecayLasso.pdf


Package source: BTdecayLasso_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): BTdecayLasso_0.1.0.tgz, r-oldrel (arm64): BTdecayLasso_0.1.0.tgz, r-release (x86_64): BTdecayLasso_0.1.0.tgz, r-oldrel (x86_64): BTdecayLasso_0.1.0.tgz


Please use the canonical form to link to this page.