BiProbitPartial: Bivariate Probit with Partial Observability

A suite of functions to estimate, summarize and perform predictions with the bivariate probit subject to partial observability. The frequentist and Bayesian probabilistic philosophies are both supported. The frequentist method is estimated with maximum likelihood and the Bayesian method is estimated with a Markov Chain Monte Carlo (MCMC) algorithm developed by Rajbanhdari, A (2014) <doi:10.1002/9781118771051.ch13>.

Version: 1.0.3
Depends: numDeriv (≥ 2016.8-1)
Imports: Rcpp (≥ 0.12.19), Formula (≥ 1.2-3), optimr (≥ 2016-8.16), pbivnorm (≥ 0.6.0), mvtnorm (≥ 1.0-8), RcppTN (≥ 0.2-2), coda (≥ 0.19-2)
LinkingTo: Rcpp, RcppArmadillo, RcppTN
Suggests: sampleSelection
Published: 2019-01-10
Author: Michael Guggisberg and Amrit Romana
Maintainer: Michael Guggisberg <mguggisb at>
License: GPL-3
NeedsCompilation: yes
CRAN checks: BiProbitPartial results


Reference manual: BiProbitPartial.pdf


Package source: BiProbitPartial_1.0.3.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): BiProbitPartial_1.0.3.tgz, r-oldrel (arm64): BiProbitPartial_1.0.3.tgz, r-release (x86_64): BiProbitPartial_1.0.3.tgz, r-oldrel (x86_64): BiProbitPartial_1.0.3.tgz
Old sources: BiProbitPartial archive


Please use the canonical form to link to this page.