Package ‘FKF’

October 12, 2022

Title Fast Kalman Filter
Version 0.2.4
Description This is a fast and flexible implementation of the Kalman filter and smoother, which can deal with NAs. It is entirely written in C and relies fully on linear algebra subroutines contained in BLAS and LAPACK. Due to the speed of the filter, the fitting of high-dimensional linear state space models to large datasets becomes possible. This package also contains a plot function for the visualization of the state vector and graphical diagnostics of the residuals.
License GPL (>= 2)
Encoding UTF-8
Imports graphics
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Depends R (>= 3.5.0)
BugReports https://github.com/waternumbers/FKF/issues
NeedsCompilation yes
RoxygenNote 7.2.1
VignetteBuilder knitr
Config/testthat/edition 3
Author David Luethi [aut], Philipp Erb [aut], Simon Otziger [aut], Daniel McDonald [aut], Paul Smith [aut, cre] (<https://orcid.org/0000-0002-0034-3412>)
Maintainer Paul Smith <paul@waternumbers.co.uk>
Repository CRAN
Date/Publication 2022-10-10 19:50:02 UTC

1
R topics documented:

- `fkf` .. 2
- `fks` .. 6
- `plot.fkf` 8
- `plot.fks` 10

Index

<table>
<thead>
<tr>
<th>R function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fkf</code></td>
<td>2</td>
</tr>
<tr>
<td><code>fks</code></td>
<td>6</td>
</tr>
<tr>
<td><code>plot.fkf</code></td>
<td>8</td>
</tr>
<tr>
<td><code>plot.fks</code></td>
<td>10</td>
</tr>
</tbody>
</table>

Description

This function allows for fast and flexible Kalman filtering. Both, the measurement and transition equation may be multivariate and parameters are allowed to be time-varying. In addition “NA”-values in the observations are supported. `fkf` wraps the C-function `FKF` which fully relies on linear algebra subroutines contained in BLAS and LAPACK.

Usage

```r
fkf(a0, P0, dt, ct, Tt, Zt, HHt, GGt, yt)
```

Arguments

- `a0` A vector giving the initial value/estimation of the state variable.
- `P0` A matrix giving the variance of `a0`.
- `dt` A matrix giving the intercept of the transition equation (see Details).
- `ct` A matrix giving the intercept of the measurement equation (see Details).
- `Tt` An array giving the factor of the transition equation (see Details).
- `Zt` An array giving the factor of the measurement equation (see Details).
- `HHt` An array giving the variance of the innovations of the transition equation (see Details).
- `GGt` An array giving the variance of the disturbances of the measurement equation (see Details).
- `yt` A matrix containing the observations. “NA”-values are allowed (see Details).

Details

State space form

The following notation is closest to the one of Koopman et al. The state space model is represented by the transition equation and the measurement equation. Let \(m \) be the dimension of the state variable, \(d \) be the dimension of the observations, and \(n \) the number of observations. The transition equation and the measurement equation are given by

\[
\alpha_{t+1} = d_t + T_t \cdot \alpha_t + H_t \cdot \eta_t
\]
\[y_t = c_t + Z_t \cdot \alpha_t + G_t \cdot \epsilon_t, \]

where \(\eta_t \) and \(\epsilon_t \) are iid \(N(0, I_m) \) and iid \(N(0, I_d) \), respectively, and \(\alpha_t \) denotes the state variable.

The parameters admit the following dimensions:

\[
\begin{align*}
\alpha_t &\in \mathbb{R}^m \\
T_t &\in \mathbb{R}^{m \times m} \\
y_t &\in \mathbb{R}^d \\
Z_t &\in \mathbb{R}^{d \times m} \\
d_t &\in \mathbb{R}^m \\
H_t &\in \mathbb{R}^{m \times m} \\
e_t &\in \mathbb{R}^d \\
c_t &\in \mathbb{R}^d \\
G_t &\in \mathbb{R}^{d \times d}
\end{align*}
\]

Note that fkf takes as input \(HH_t \) and \(GG_t \) which corresponds to \(H_t H_t' \) and \(G_t G_t' \).

Iteration:

The filter iterations are implemented using the expected values

\[
\begin{align*}
a_t &= E[\alpha_t | y_1, \ldots, y_{t-1}] \\
a_{t|t} &= E[\alpha_t | y_1, \ldots, y_t]
\end{align*}
\]

and variances

\[
\begin{align*}
P_t &= Var[\alpha_t | y_1, \ldots, y_{t-1}] \\
P_{t|t} &= Var[\alpha_t | y_1, \ldots, y_t]
\end{align*}
\]

of the state \(\alpha_t \) in the following way (for the case of no NA’s):

Initialisation: Set \(t = 1 \) with \(a_t = a_0 \) and \(P_t = P_0 \)

Updating equations:

\[
\begin{align*}
v_t &= y_t - c_t - Z_t a_t \\
F_t &= Z_t P_t Z_t' + G_t G_t' \\
K_t &= P_t Z_t' F_t^{-1} \\
a_{t|t} &= a_t + K_t v_t \\
P_{t|t} &= P_t - P_t Z_t' K_t
\end{align*}
\]

Prediction equations:

\[
\begin{align*}
a_{t+1} &= d_t + T_t a_{t|t} \\
P_{t+1} &= T_t P_{t|t} T_t' + H_t H_t'
\end{align*}
\]

Next iteration: Set \(t = t + 1 \) and goto “Updating equations”.

NA-values:

NA-values in the observation matrix \(y_t \) are supported. If particular observations \(y_{t[,i]} \) contain NAs, the NA-values are removed and the measurement equation is adjusted accordingly. When the full vector \(y_{t[,i]} \) is missing the Kalman filter reduces to a prediction step.

Parameters:

The parameters can either be constant or deterministic time-varying. Assume the number of observations is \(n \) (i.e. \(y = (y_t)_{t=1,\ldots,n}, y_t = (y_{t,1}, \ldots, y_{t,d}) \)). Then, the parameters admit the following classes and dimensions:
dt either a $m \times n$ (time-varying) or a $m \times 1$ (constant) matrix.

Tt either a $m \times m \times n$ or a $m \times m \times 1$ array.

Htt either a $m \times m \times n$ or a $m \times m \times 1$ array.

ct either a $d \times n$ or a $d \times 1$ matrix.

Zt either a $d \times m \times n$ or a $d \times m \times 1$ array.

Gtt either a $d \times d \times n$ or a $d \times d \times 1$ array.

yt a $d \times n$ matrix.

BLAS and LAPACK routines used:

The R function `fkf` basically wraps the C-function `FKF`, which entirely relies on linear algebra subroutines provided by BLAS and LAPACK. The following functions are used:

BLAS: `dcopy`, `dgemm`, `daxpy`.

LAPACK: `dpotri`, `dpotrf`.

`FKF` is called through the `.Call` interface. Internally, `FKF` extracts the dimensions, allocates memory, and initializes the R-objects to be returned. `FKF` subsequently calls `cfkf` which performs the Kalman filtering.

The only critical part is to compute the inverse of F_t and the determinant of F_t. If the inverse can not be computed, the filter stops and returns the corresponding message in `status` (see **Value**). If the computation of the determinant fails, the filter will continue, but the log-likelihood (element `logLik`) will be “NA”.

The inverse is computed in two steps: First, the Cholesky factorization of F_t is calculated by `dpotrf`. Second, `dpotri` calculates the inverse based on the output of `dpotrf`.

The determinant of F_t is computed using again the Cholesky decomposition.

The first element of both `at` and `Pt` is filled with the function arguments a_0 and P_0, and the last, i.e. the $(n + 1)$-th, element of `at` and `Pt` contains the predictions for the next time step.

Value

An S3-object of class “fkf”, which is a list with the following elements:

- `att` A $m \times n$-matrix containing the filtered state variables, i.e. `att[,t] = a_{t|t}`.
- `at` A $m \times (n + 1)$-matrix containing the predicted state variables, i.e. `at[,t] = a_t`.
- `Ptt` A $m \times m \times n$-array containing the variance of `att`, i.e. `Ptt[,t] = P_{t|t}`.
- `Pt` A $m \times m \times (n + 1)$-array containing the variances of `at`, i.e. `Pt[,t] = P_t`.
- `vt` A $d \times n$-matrix of the prediction errors i.e. `vt[,t] = v_t`.
- `Ft` A $d \times d \times n$-array which contains the variances of `vt`, i.e. `Ft[,t] = F_t`.
- `Kt` A $m \times d \times n$-array containing the “Kalman gain” i.e. `Kt[,t] = k_t`.
- `logLik` The log-likelihood.
- `status` A vector which contains the status of LAPACK’s `dpotri` and `dpotrf`. (0, 0) means successful exit.
- `sys.time` The time elapsed as an object of class “proc_time”.

References

See Also

`plot` to visualize and analyze `fkf`-objects, `KalmanRun` from the stats package, function `dlmFilter` from package `dlm`.

Examples

```r
## Example: Local level model for the Nile's annual flow.

## Transition equation:
## alpha[t+1] = alpha[t] + eta[t], eta[t] ~ N(0, HHT)
## Measurement equation:
## y[t] = alpha[t] + eps[t], eps[t] ~ N(0, GGT)

y <- Nile
y[c(3, 10)] <- NA  # NA values can be handled

## Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- y[1]          # Estimation of the first year flow
P0 <- matrix(100)   # Variance of 'a0'

## Estimate parameters:
fit.fkf <- optim(c(HHt = var(y, na.rm = TRUE) * .5, GGT = var(y, na.rm = TRUE) * .5),
                 fn = function(par, ...) -fkf(HHt = matrix(par[1]), GGT = matrix(par[2]), ...)$logLik,
                 yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct,
                 Zt = Zt, Tt = Tt)

## Filter Nile data with estimated parameters:
fkf.obj <- fkf(a0, P0, dt, ct, Tt, Zt, HHt = matrix(fit.fkf$par[1]),
               GGT = matrix(fit.fkf$par[2]), yt = rbind(y))

## Compare with the stats' structural time series implementation:
fit.stats <- StructTS(y, type = "level")
fit.fkf$par
fit.stats$coef

## Plot the flow data together with fitted local levels:
plot(y, main = "Nile flow")
lines(fitted(fit.stats), col = "green")
lines(ts(fkf.obj$att[1, ], start = start(y), frequency = frequency(y)), col = "blue")
legend("top", c("Nile flow data", "Local level (StructTS)", "Local level (fkf)"),
       col = c("black", "green", "blue"), lty = 1)
```


Fast Kalman Smoother

Description

This function can be run after running \texttt{fkf} to produce "smoothed" estimates of the state variable \(\alpha_t \). Unlike the output of the filter, these estimates are conditional on the entire set of \(n \) data points rather than only the past, see details.

Usage

\texttt{fks(FKFobj)}

Arguments

- \texttt{FKFobj} An S3-object of class "fkf", returned by \texttt{fkf}.

Details

The following notation is taken from the \texttt{fkf} function descriptions and is close to the one of Koopman et al. The smoother estimates

\[
\begin{align*}
\alpha_t|n &= E[\alpha_t|y_1, \ldots, y_n] \\
\varrho_t|n &= Var[\alpha_t|y_1, \ldots, y_n]
\end{align*}
\]

based on the outputs of the forward filtering pass performed by \texttt{fkf}.

The formulation of Koopman and Durbin is used which evolves the two values \(r_t \in \mathbb{R}^m \) and \(N_t \in \mathbb{R}^{m \times m} \) to avoid inverting the covariance matrix.

Iteration:

If there are no missing values the iteration proceeds as follows:

- **Initialisation:** Set \(t = n \), with \(r_t = 0 \) and \(N_t = 0 \).
- **Evolution equations:**
 \[
 \begin{align*}
 L &= T_t - T_t K_t Z_t \\
 r_{t-1} &= Z'_t F_t^{-1} v_t + L' r_t \\
 N_{t-1} &= Z'_t F_t^{-1} Z_t + L' N_t L
 \end{align*}
 \]
- **Updating equations:**
 \[
 \begin{align*}
 \alpha_t|n &= \alpha_t|t-1 + P_t|t-1 r_{t-1} \\
 \varrho_t|n &= P_t|t-1 - P_t|t-1 N_{t-1} P_t|t-1
 \end{align*}
 \]

Next iteration: Set \(t = t - 1 \) and goto “Evolution equations”.

Value

An S3-object of class "fks" which is a list with the following elements:

- `ahatt` A \(m \times n \)-matrix containing the smoothed state variables, i.e. \(\text{ahatt}[t] = a_{t|n} \)
- `Vt` A \(m \times m \times n \)-array containing the variances of `ahatt`, i.e. \(\text{Vt}[\cdot,t] = P_{t|n} \)

References

Examples

```r
## Example: Local level model for the Nile's annual flow.
## Transition equation:
## \( \alpha_{t+1} = \alpha_t + \eta_t \), \( \eta_t \sim N(0, HH_t) \)
## Measurement equation:
## \( y_t = \alpha_t + \varepsilon_t \), \( \varepsilon_t \sim N(0, GG_t) \)

y <- Nile
y[c(3, 10)] <- NA # NA values can be handled

dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- y[1] # Estimation of the first year flow
P0 <- matrix(100) # Variance of 'a0'

fit.fkf <- optim(c(HHt = var(y, na.rm = TRUE) * .5,
                  GGt = var(y, na.rm = TRUE) * .5),
                  fn = function(par, ...) -fkf(HHt = matrix(par[1]), GGt = matrix(par[2]), ...)$logLik,
                  yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct,
                  Zt = Zt, Tt = Tt)

fkf.obj <- fkf(a0, P0, dt, ct, Tt, Zt, HHt = matrix(fit.fkf$par[1]),
               GGt = matrix(fit.fkf$par[2]), yt = rbind(y))

fks.obj <- fks(fkf.obj)

plot(y, main = "Nile flow")
lines(ts(fkf.obj$att[1, ], start = start(y), frequency = frequency(y)), col = "blue")
lines(ts(fks.obj$ahatt[1, ], start = start(y), frequency = frequency(y)), col = "red")
legend("top", c("Nile flow data", "Local level (fkf)", "Local level (fks)"),
        col = c("black", "green", "blue", "red"), lty = 1)
```
Description

Plotting method for objects of class `fkf`. This function provides tools for graphical analysis of the Kalman filter output: Visualization of the state vector, QQ-plot of the individual residuals, QQ-plot of the Mahalanobis distance, auto- as well as crosscorrelation function of the residuals.

Usage

```r
## S3 method for class 'fkf'
plot(
  x,  
  type = c("state", "resid.qq", "qqchisq", "acf"),  
  CI = 0.95,  
  at.idx = 1:nrow(x$at),  
  att.idx = 1:nrow(x$att),  
  ...  
)
```

Arguments

- `x` The output of `fkf`
- `type` A string stating what shall be plotted (see Details).
- `CI` The confidence interval in case `type == "state"`. Set `CI` to `NA` if no confidence interval shall be plotted.
- `at.idx` An vector giving the indexes of the predicted state variables which shall be plotted if `type == "state"`.
- `att.idx` An vector giving the indexes of the filtered state variables which shall be plotted if `type == "state"`.
- `...` Arguments passed to either `plot`, `qqnorm`, `qqplot` or `acf`.

Details

The argument `type` states what shall be plotted. `type` must partially match one of the following:

- `state` The state variables are plotted. By the arguments `at.idx` and `att.idx`, the user can specify which of the predicted (`at`) and filtered (`att`) state variables will be drawn.
- `resid.qq` Draws a QQ-plot for each residual-series `invt`.
- `qqchisq` A Chi-Squared QQ-plot will be drawn to graphically test for multivariate normality of the residuals based on the Mahalanobis distance.
- `acf` Creates a pairs plot with the autocorrelation function (`acf`) on the diagonal panels and the crosscorrelation function (`ccf`) of the residuals on the off-diagonal panels.
Value

Invisibly returns a list with components:

- **distance**: The Mahalanobis distance of the residuals as a vector of length \(n \).
- **std.resid**: The standardized residuals as an \(d \times n \)-matrix. It should hold that \(\text{std.resid}_{ij} \ iid \sim \mathcal{N}_d(0, I) \),

where \(d \) denotes the dimension of the data and \(n \) the number of observations.

usage

```r
plot(x, type = c("state", "resid.qq", "qqchisq", "acf"), CI = 0.95, at.idx = 1:nrow(x$at), att.idx = 1:nrow(x$att), ...)
```

See Also

fkf

Examples

```r
## <--------------------------------------------------------------------------->
## Example: Local level model for the tree ring data
## <--------------------------------------------------------------------------->
## Transition equation:
## \[ \alpha[t+1] = \alpha[t] + \eta[t], \eta[t] \sim N(0, HH_t) \]
## Measurement equation:
## \[ y[t] = \alpha[t] + \epsilon[t], \epsilon[t] \sim N(0, GG_t) \]

y <- treering
y[c(3, 10)] <- NA  # NA values can be handled

## Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- array(1,c(1,1,1))
a0 <- y[1]  # Estimation of the first width
P0 <- matrix(100)  # Variance of 'a0'

## Estimate parameters:
fit.fkf <- optim(c(HHt = var(y, na.rm = TRUE) * .5, 
                  GGt = var(y, na.rm = TRUE) * .5),
                 fn = function(par, ...) 
                 -fkf(HHt = array(par[1],c(1,1,1)), GGt = array(par[2],c(1,1,1)), ...)$logLik, 
                 yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct, 
                 Zt = Zt, Tt = Tt)

## Filter tree ring data with estimated parameters:
fkf.obj <- fkf(a0, P0, dt, ct, Tt, Zt, HHt = array(fit.fkf$par[1],c(1,1,1)), 
               GGt = array(fit.fkf$par[2],c(1,1,1)), yt = rbind(y))

## Plot the width together with fitted local levels:
plot(y, main = "Tree ring data")
lines(ts(fkf.obj$att[1, ], start = start(y), frequency = frequency(y)), col = "blue")
```
Check the residuals for normality:
plot(fkf.obj, type = "resid.qq")

Test for autocorrelation:
plot(fkf.obj, type = "acf", na.action = na.pass)
y[t] = alpha[t] + eps[t], eps[t] ~ N(0, G\sigma_t)

y <- treering
y[c(3, 10)] <- NA # NA values can be handled

Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- array(1,c(1,1,1))
a0 <- y[1] # Estimation of the first width
P0 <- matrix(100) # Variance of 'a0'

Estimate parameters:
fit.fkf <- optim(c(HHt = var(y, na.rm = TRUE) * .5, GGt = var(y, na.rm = TRUE) * .5),
 fn = function(par, ...)
 -fkf(HHt = array(par[1], c(1,1,1)), GGt = array(par[2], c(1,1,1)), ...)$logLik,
 yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct,
 Zt = Zt, Tt = Tt)

Filter tree ring data with estimated parameters:
fkf.obj <- fkf(a0, P0, dt, ct, Tt, Zt, HHt = array(fit.fkf$par[1], c(1,1,1)),
 GGt = array(fit.fkf$par[2], c(1,1,1)), yt = rbind(y))

fks.obj <- fks(fkf.obj)
plot(fks.obj)
lines(as.numeric(y), col="blue")
Index

* algebra
 fkf, 2

* hplot
 plot.fkf, 8

* models
 fkf, 2

* multivariate
 fkf, 2

* plot
 plot.fks, 10

acf, 8, 10
ccf, 8

fkf, 2, 6, 8, 9
fks, 6, 10

KalmanRun, 5

plot, 5, 8, 10
plot.fkf, 8
plot.fks, 10

qqnorm, 8, 10
qqplot, 8, 10