Package ‘GSM’

October 12, 2022

Title Gamma Shape Mixture
Version 1.3.2
Date 2015-07-06

Description Implementation of a Bayesian approach for estimating a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter.

Author Sergio Venturini
Maintainer Sergio Venturini <sergio.venturini@unibocconi.it>
Depends gtools, methods, utils
Imports graphics, grDevices, stats
License GPL (>= 2)

URL http://projecteuclid.org/euclid.aoas/1215118537
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-08 00:27:06

R topics documented:

GSM-package ... 2
allcurves.q ... 2
estim.gsm ... 3
estim.gsm_theta ... 4
gsm-class ... 6
GSMDist ... 7
plot-methods .. 8
predict-methods ... 9
summary-methods ... 10

Index 12
GSM-package

Estimation of a Gamma Shape Mixture Model

Description

This package implements a Bayesian approach for estimation of a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter. See Venturini et al. (2008).

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

estim.gsm, estim.gsm_theta.

allcurves.q

Utility Function

Description

Utility function for plotting a Gamma Shape Mixture Model density.

Usage

allcurves.q(post, perc)

Arguments

post matrix containing of a mixture’s density posterior draws.
perc percentile, a value that satisfies 0 < perc < 1.

Details

This is a utility function used to generate the credibility bands for a Gamma Shape Mixture density within plot.
estim.gsm

Author(s)
Sergio Venturini <sergio.venturini@unibocconi.it>

See Also
plot-methods.

estim.gsm

Estimation of a Gamma Shape Mixture Model (GSM) with collapsing

Description
This function provides the inferential algorithm to estimate a mixture of gamma distributions in which the mixing occurs over the shape parameter. It implements the collapsing approach for the GSM model, as discussed in Venturini et al. (2008).

Usage
estim.gsm(y, J, G = 100, M = 600, a, b, alpha, init = list(rep(1 / J, J), NA, rep(1, N)))

Arguments
y vector of data.
J number of mixture components.
G number of points where to evaluate the GSM density.
M number of MCMC runs.
a hyperparameter of the rate parameter prior distribution.
b hyperparameter of the rate parameter prior distribution.
alpha hyperparameter of the mixture’s weights prior distribution.
init initialization values.

Details
Suggestions on how to choose J, a and b are provided in Venturini et al. (2008). In that work the alpha vector is always set at (1/J,...,1/J), but here one is free to choose the value of the generic element of alpha.

Value
estim.gsm returns an object of class "gsm", which is a list with the following components:

fdens matrix containing the posterior draws for the mixture’s density.
theta vector containing the posterior draws for the mixture’s rate parameter.
weight matrix containing the posterior draws for the mixture’s weights.
label matrix containing the posterior draws for the mixture’s labels.
data vector of data.
estim.gsm_theta

Estimation of a Gamma Shape Mixture Model (GSM)

Description
This function provides the inferential algorithm to estimate a mixture of gamma distributions in which the mixing occurs over the shape parameter. It implements the standard approach for the GSM model, as discussed in Venturini et al. (2008).

Usage

estim.gsm_theta(y, J, G = 100, M = 600, a, b, alpha, init = list(rep(1 / J, J), J / max(y), rep(1, N)))

Arguments

y vector of data.
J number of mixture components.
G number of points where to evaluate the GSM density.
M number of MCMC runs.
a hyperparameter of the rate parameter prior distribution.

Examples

Not run:
set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 100
mcmcsim <- 500
J <- 250
gsm.out <- estim.gsm(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
summary(gsm.out, plot = TRUE, start = (burnin + 1))
plot(gsm.out, ndens = 0, nbin = 20, histogram = TRUE, start = (burnin + 1))
End(Not run)
estim.gsm_theta

b hyperparameter of the rate parameter prior distribution.
alpha hyperparameter of the mixture’s weights prior distribution.
init initialization values.

Details

Suggestions on how to choose J, a and b are provided in Venturini et al. (2008). In that work the alpha vector is always set at (1/J,...,1/J), but here one is free to choose the value of the generic element of alpha.

Value

estim.gsm_theta returns an object of class "gsm", which is a list with the following components:

fdens matrix containing the posterior draws for the mixture’s density.
theta vector containing the posterior draws for the mixture’s rate parameter.
weight matrix containing the posterior draws for the mixture’s weights.
label matrix containing the posterior draws for the mixture’s labels.
data vector of data.

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

estim.gsm, summary-methods, plot-methods.

Examples

Not run:
set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 100
mcmcsim <- 500
J <- 250
gsm.out <- estim.gsm_theta(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
summary(gsm.out, plot = TRUE, start = (burnin + 1))
plot(gsm.out, ndens = 0, nbin = 20, histogram = TRUE, start = (burnin + 1))
End(Not run)
Class "gsm". Result of Gamma Shape Mixture Estimation.

Description
This class encapsulates results of a Gamma Shape Mixture estimation procedure.

Objects from the Class
Objects can be created by calls of the form new("gsm", fdens, theta, weight, data), but most often as the result of a call to estim.gsm or estim.gsm_theta.

Slots
- fdens: Object of class "matrix"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture density.
- theta: Object of class "numeric"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture scale parameter.
- weight: Object of class "matrix"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture weights.
- label: Object of class "matrix"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture labels.
- data: Object of class "numeric"; original data.

Methods
- plot signature(x = "gsm", y = "missing"): Plot Gamma Shape Mixture estimate.
- predict signature(object = "gsm"): Estimate of the Gamma Shape Mixture upper tail.
- summary signature(object = "gsm"): Generate object summary.

Author(s)
Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also
estim.gsm, summary-methods, plot-methods, predict-methods, summary-methods.
Description

Function evaluations for a Gamma Shape Mixture Model.

Usage

dgsm(x, weight, rateparam)
pgsm(q, weight, rateparam, lower.t = TRUE)
rgsm(n, weight, rateparam)
qgsm(p, x = NULL, weight, rateparam, alpha = .05, br = c(0, 1000), lower.t = TRUE)

Arguments

x, q vector of quantiles.
n number of observations.
p vector of probabilities.
weight vector of mixture weights.
rateparam reciprocal of the shape parameter, as in GammaDist.
alpha outside the interval (alpha, 1 - alpha) the quantiles are found by searching for the root of $F(x) - p = 0$.
br a vector containing the end-points of the interval to be searched for the root.
lower.t logical; if TRUE (default), probabilities are $P[X <= x]$ otherwise, $P[X > x]$.

Details

The parametrisation implemented in this function is described in Venturini et al. (2008).

Value

dgsm gives the density, pgsm gives the distribution function, qgsm gives the quantile function, and rgsm generates random deviates.

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

plot-methods

See Also
dgamma, pgamma, rgamma, uniroot.

plot-methods Plot of a Gamma Shape Mixture Model

Description
plot method for class "gsm". This function plots the output of a Gamma Shape Mixture estimation procedure.

Usage
S4 method for signature 'gsm,missing'
plot(x, ndens = 5, xlab = "x", ylab = "density", nbin = 10,
histogram = FALSE, bands = FALSE, confid = .95, start = 1, ...)

Arguments
x object of class "gsm": a list returned by the estim.gsm or estim.gsm_theta functions.
ndens number of simulated density curves to plot.
xlab a title for the x axis.
ylab a title for the y axis.
nbin number of bins for the histogram.
histogram logical; if TRUE the histogram is plotted on the figure.
bands logical; if TRUE the 95% credibility bands are overimposed on the density graph.
confid confidence level for the pointwise credibility bands around the density estimate.
start MCMC run to start from.
... further arguments passed to or from other methods.

Details
To produce a standard histogram with the estimated density curve superimposed on it, simply set ndens to 0 and histogram to TRUE.

Value
List with the following components:
xval horizontal coordinates.
yval vertical coordinates (pointwise density posterior means).
predict-methods

Tail Probability Estimation for a Gamma Shape Mixture Model

Description

Predict method for class "gsm". This function allows to estimate the tail probability of a Gamma Shape Mixture Model using the output of the `estim.gsm` or `estim.gsm_theta` procedures.

Usage

```r
## S4 method for signature 'gsm'
predict(object, thresh, start = 1, ...)
```

Arguments

- `object` object of class "gsm": a list returned by the `estim.gsm` or `estim.gsm_theta` functions.
- `thresh` threshold value.
- `start` MCMC run to start from.
- `...` further arguments passed to or from other methods.
Details

The tail probability is estimated by applying the standard Rao-Blackwellized estimator on the Gibbs sampling realizations obtained through the `estim.gsm` or `estim.gsm_theta` procedures.

Value

A numerical vector containing the posterior draws for the tail probability exceeding the value of `thresh`.

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

`estim.gsm`, `estim.gsm_theta`, `predict-methods`, `plot-methods`.

Examples

```r
set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 5
mcmcsim <- 10
J <- 250
gsm.out <- estim.gsm(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
thresh <- c(0.1, 0.5, 0.75, 1, 2)
tail.prob.est <- tail.prob.true <- rep(NA, length(thresh))
for (i in 1:length(thresh)){
  tail.prob.est[i] <- mean(predict(gsm.out, thresh[i]))
  tail.prob.true[i] <- sum(y > thresh[i])/length(y)
}
qqplot(tail.prob.true, tail.prob.est, main = "Q-Q plot of true vs. estimated tail probability")
abline(0, 1, lty = 2)
```

Description

`summary-methods` Summarizing Gamma Shape Mixtures

`summary` method for class "gsm". This function allows to summarize the output of a Gamma Shape Mixture estimate procedure like `estim.gsm` or `estim.gsm_theta`.
Usage

S4 method for signature 'gsm'
summary(object, plot = FALSE, start = 1, ...)

Arguments

object object of class "gsm"; a list returned by the estim.gsm or estim.gsm_theta functions.
plot logical; if TRUE produces a bar plot of the mixture weights posterior means.
start MCMC run to start from.
... further arguments passed to or from other methods.

Value

The function summary computes and returns a list of summary statistics of the fitted gamma shape mixture given in object, in particular

theta summary index of the theta parameter posterior draws.
weight vector of the mixture weights posterior means.
posterior means

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

estim.gsm, estim.gsm_theta, plot-methods, predict-methods.

Examples

set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 5
mcmcsim <- 10
J <- 250
gsm.out <- estim.gsm(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
summary(gsm.out, TRUE, start = (burnin + 1))
Index

* class
 gsm-class, 6
* distribution
 estim.gsm, 3
 estim.gsm_theta, 4
 GSM-package, 2
 GSMDist, 7
* methods
 gsm-class, 6
 plot-methods, 8
 predict-methods, 9
 summary-methods, 10
* mixture
 estim.gsm, 3
 estim.gsm_theta, 4
 GSM-package, 2

allcurves.q, 2

class, 3, 5
dgamma, 8
dgsm, 7
dgsm(GSMDist), 7

estim.gsm, 2, 3, 5, 6, 8–11
estim.gsm_theta, 2, 4, 4, 6, 8–11

GammaDist, 7
gsm-class, 6
GSM-package, 2
GSMDist, 7

initialize,gsm-method(gsm-class), 6

pgamma, 8
pgsm, 7
pgsm(GSMDist), 7
plot, 2
plot,ANY,ANY-method(plot-methods), 8
plot-methods, 8
predict,ANY-method(predict-methods), 9
predict,gsm-method(predict-methods), 9
predict-methods, 9

qgsm, 7
qgsm(GSMDist), 7

rgamma, 8
rgsm, 7
rgsm(GSMDist), 7

summary,ANY-method(summary-methods), 10
summary,gsm-method(summary-methods), 10
summary-methods, 10

uniroot, 8