A Handbook of Statistical Analyses Using R

Brian S. Everitt and Torsten Hothorn
Multiple Linear Regression: Cloud Seeding

5.1 Introduction

5.2 Multiple Linear Regression

5.3 Analysis Using R

Both the boxplots (Figure 5.1) and the scatterplots (Figure 5.2) show some evidence of outliers. The row names of the extreme observations in the clouds data.frame can be identified via

```R
rownames(clouds)[clouds$rainfall %in% c(bxpseeding$out, + bxpecho$out)]
```

where bxpseeding and bxpecho are variables created by boxplot in Figure 5.1. For the time being we shall not remove these observations but bear in mind during the modelling process that they may cause problems.

5.3.1 Fitting a Linear Model

In this example it is sensible to assume that the effect that some of the other explanatory variables is modified by seeding and therefore consider a model that allows interaction terms for seeding with each of the covariates except time. This model can be described by the formula

```R
clouds_formula <- rainfall ~ seeding * (sne + cloudcover + + prewetness + echomotion) + time
```

and the design matrix X^\star can be computed via

```R
Xstar <- model.matrix(clouds_formula, data = clouds)
```

By default, treatment contrasts have been applied to the dummy codings of the factors seeding and echomotion as can be seen from the inspection of the contrasts attribute of the model matrix

```R
attr(Xstar, "contrasts")
```

The default contrasts can be changed via the contrasts.arg argument to model.matrix or the contrasts argument to the fitting function, for example lm or aov as shown in Chapter 4.
R> data("clouds", package = "HSAUR")
R> layout(matrix(1:2, nrow = 2))
R> bxpseeding <- boxplot(rainfall ~ seeding, data = clouds,
+ ylab = "Rainfall", xlab = "Seeding")
R> bxpecho <- boxplot(rainfall ~ echomotion, data = clouds,
+ ylab = "Rainfall", xlab = "Echo Motion")

Figure 5.1 Boxplots of rainfall.
ANALYSIS USING R

R> layout(matrix(1:4, nrow = 2))
R> plot(rainfall ~ time, data = clouds)
R> plot(rainfall ~ cloudcover, data = clouds)
R> plot(rainfall ~ sne, data = clouds, xlab="S-Ne criterion")
R> plot(rainfall ~ prewetness, data = clouds)

Figure 5.2 Scatterplots of rainfall against the continuous covariates.

However, such internals are hidden and performed by high-level model fitting functions such as lm which will be used to fit the linear model defined by the formula clouds_formula:

R> clouds_lm <- lm(clouds_formula, data = clouds)
R> class(clouds_lm)

[1] “lm”

The results of the model fitting is an object of class lm for which a summary method showing the conventional regression analysis output is available. The
output in Figure 5.3 shows the estimates $\hat{\beta}$ with corresponding standard errors and t-statistics as well as the F-statistic with associated p-value.

R> summary(clouds_lm)

Call:
lm(formula = clouds_formula, data = clouds)

Residuals:
 Min 1Q Median 3Q Max
-2.5259 -1.1486 -0.2704 1.0401 4.3913

Coefficients: Estimate Std. Error t value
(Intercept) -0.34624093 2.78773 -0.1240
seedingyes 15.68293481 4.44627 3.5271
sne 0.41981393 0.84453 0.4970
cloudcover 0.38786207 0.21786 1.7800
prewetness 4.10834364 3.60101 1.1411
time -0.04497145 0.02505 -1.7953
seedingyes:sne -3.19719221 1.26707 -2.5237
seedingyes:cloudcover -0.48625424 0.24106 -2.0174
seedingyes:prewetness -2.55707304 4.48090 -0.5709
seedingyes:echomotionstationary 0.56222 2.84430 0.2130

Pr(>|t|)
(Intercept) 0.90306
seedingyes 0.00372 **
sne 0.62742
cloudcover 0.09839 .
prewetness 0.09590
time 0.02545 *
seedingyes:sne 0.06482 .
seedingyes:cloudcover 0.56482 .
seedingyes:prewetness 0.57796
seedingyes:echomotionstationary 0.83492

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.205 on 13 degrees of freedom
Multiple R-squared: 0.7158, Adjusted R-squared: 0.4972
F-statistic: 3.274 on 10 and 13 DF, p-value: 0.02431

Figure 5.3 R output of the linear model fit for the clouds data.

Many methods are available for extracting components of the fitted model. The estimates $\hat{\beta}$ can be assessed via

R> betastar <- coef(clouds_lm)
R> betastar

(Intercept)
-0.34624093

seedingyes
15.68293481

sne
0.41981393

cloudcover
0.38786207
ANALYSIS USING R

\begin{verbatim}
prewetness 4.10834188
echomotionstationary 3.15281358
time -0.04497427
seedingyes:sne -3.19719006
seedingyes:cloudcover -0.48625492
seedingyes:prewetness -2.55706696
seedingyes:echomotionstationary -0.56221845
\end{verbatim}

and the corresponding covariance matrix $\text{Cov}(\hat{\beta}^\star)$ is available from the \texttt{vcov} method

\begin{verbatim}
R> Vbetastar <- vcov(clouds_lm)
\end{verbatim}

where the square roots of the diagonal elements are the standard errors as shown in Figure 5.3

\begin{verbatim}
R> sqrt(diag(Vbetastar))
\end{verbatim}

\begin{verbatim}
(Intercept) 2.78773403
seedingyes 4.44626606
sne 0.84452994
cloudcover 0.21785501
prewetness 3.60100694
echomotionstationary 1.93252592
time 0.02505286
seedingyes:sne 1.26707204
seedingyes:cloudcover 0.24106012
seedingyes:prewetness 4.48089584
seedingyes:echomotionstationary 2.64429975
\end{verbatim}

5.3.2 Regression Diagnostics

In order to investigate the quality of the model fit, we need access to the residuals and the fitted values. The residuals can be found by the \texttt{residuals}
Figure 5.4 Regression relationship between S-Ne criterion and rainfall with and without seeding.
method and the fitted values of the response from the `fitted` (or `predict`) method

```r
R> clouds_resid <- residuals(clouds_lm)
R> clouds_fitted <- fitted(clouds_lm)
```

Now the residuals and the fitted values can be used to construct diagnostic plots; for example the residual plot in Figure 5.5 where each observation is labelled by its number. Observations 1 and 15 give rather large residual values and the data should perhaps be reanalysed after these two observations are removed. The normal probability plot of the residuals shown in Figure 5.6 shows a reasonable agreement between theoretical and sample quantiles, however, observations 1 and 15 are extreme again.

An index plot of the Cook’s distances for each observation (and many other plots including those constructed above from using the basic functions) can be found from applying the `plot` method to the object that results from the application of the `lm` function. Figure 5.7 suggests that observations 2 and 18 have undue influence on the estimated regression coefficients, but the two outliers identified previously do not. Again it may be useful to look at the results after these two observations have been removed (see Exercise 5.2).
R> plot(clouds_fitted, clouds_resid, xlab = "Fitted values",
+ ylab = "Residuals", type = "n",
+ ylim = max(abs(clouds_resid)) * c(-1, 1))
R> abline(h = 0, lty = 2)
R> text(clouds_fitted, clouds_resid, labels = rownames(clouds))

Figure 5.5 Plot of residuals against fitted values for clouds seeding data.
R> qnorm(clouds_resid, ylab = "Residuals")
R> qline(clouds_resid)

Figure 5.6 Normal probability plot of residuals from cloud seeding model clouds_lm.
Figure 5.7 Index plot of Cook’s distances for cloud seeding data.