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1 Introduction

MXM is an R package which contains functions for feature selection, cross-validation and

Bayesian Networks. The main functionalities focus on feature selection for different types of

data. We highlight the option for parallel computing and the fact that some of the functions have

been either partially or fully implemented in C++. As for the other ones, we always try to make

them faster.

2 Feature selection related functions

MXM offers many feature selection algorithms, namely MMPC, SES, MMMB, FBED, forward and

backward regression. The target set of variables to be selected, ideally what we want to discover,

is called Markov Blanket and it consists of the parents, children and parents of children (spouses)

of the variable of interest assuming a Bayesian Network for all variables.

MMPC stands for Max-Min Parents and Children. The idea is to use the Max-Min heuristic

when choosing variables to put in the selected variables set and proceed in this way. Parents

and Children comes from the fact that the algorithm will identify the parents and children of the

variable of interest assuming a Bayesian Network. What it will not recover is the spouses of the

children of the variable of interest. For more information the reader is addressed to [23].

MMMB (Max-Min Markov Blanket) extends the MMPC to discovering the spouses of the

variable of interest [19]. SES (Statistically Equivalent Signatures) on the other hand extends

MMPC to discovering statistically equivalent sets of the selected variables [18, 9]. Forward and

Backward selection are the two classical procedures.

The functionalities or the flexibility offered by all these algorithms is their ability to handle

many types of dependent variables, such as continuous, survival, categorical (ordinal, nominal,

binary), longitudinal. Let us now see all of them one by one. The relevant functions are

1. MMPC and SES. SES uses MMPC to return multiple statistically equivalent sets of vari-

ables. MMPC returns only one set of variables. In all cases, the log-likelihood ratio test

is used to assess the significance of a variable. These algorithms accept categorical only,

continuous only or mixed data in the predictor variables side.

2. wald.mmpc and wald.ses. SES uses MMPC using the Wald test. These two algorithms

accept continuous predictor variables only.
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3. perm.mmpc and perm.ses. SES uses MMPC where the p-value is obtained using per-

mutations. Similarly to the Wald versions, these two algorithms accept continuous predictor

variables only.

4. ma.mmpc and ma.ses. MMPC and SES for multiple datasets measuring the same variables

(dependent and predictors).

5. MMPC.temporal and SES.temporal. Both of these algorithms are the usual SES and

MMPC modified for correlated data, such as clustered or longitudinal. The predictor vari-

ables can only be continuous.

6. fbed.reg. The FBED feature selection method [2]. The log-likelihood ratio test or the eBIC

(BIC is a special case) can be used.

7. fbed.glmm.reg. FBED with generalised linear mixed models for repeated measures or

clustered data.

8. fbed.ge.reg. FBED with GEE for repeated measures or clustered data.

9. ebic.bsreg. Backward selection method using the eBIC.

10. fs.reg. Forward regression method for all types of predictor variables and for most of the

available tests below.

11. glm.fsreg Forward regression method for logistic and Poisson regression in specific. The

user can call this directly if he knows his data.

12. lm.fsreg. Forward regression method for normal linear regression. The user can call this

directly if he knows his data.

13. bic.fsreg. Forward regression using BIC only to add a new variable. No statistical test is

performed.

14. bic.glm.fsreg. The same as before but for linear, logistic and Poisson regression (GLMs).

15. bs.reg. Backward regression method for all types of predictor variables and for most of the

available tests below.

16. glm.bsreg. Backward regression method for linear, logistic and Poisson regression (GLMs).

17. iamb. The IAMB algorithm [20] which stands for Incremental Association Markov Blanket.

The algorithm performs a forward regression at first, followed by a backward regression

offering two options. Either the usual backward regression is performed or a faster variation,

but perhaps less correct variation. In the usual backward regression, at every step the least

significant variable is removed. In the IAMB original version all non significant variables are

removed at every step.

18. mmmb. This algorithm works for continuous or categorical data only. After applying the

MMPC algorithm one can go to the selected variables and perform MMPC on each of them.
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A list with the available options for this argument is given below. Make sure you include

the test name within ”” when you supply it. Most of these tests come in their Wald and perm

(permutation based) versions. In their Wald or perm versions, they may have slightly different

acronyms, for example waldBinary or WaldOrdinal denote the logistic and ordinal regression

respectively.

1. testIndFisher. This is a standard test of independence when both the target and the set

of predictor variables are continuous (continuous-continuous).

2. testIndSpearman. This is a non-parametric alternative to testIndFisher test [6].

3. testIndReg. In the case of target-predictors being continuous-mixed or continuous-categorical,

the suggested test is via the standard linear regression. If the robust option is selected, M

estimators [11] are used. If the target variable consists of proportions or percentages (within

the (0, 1) interval), the logit transformation is applied beforehand.

4. testIndRQ. Another robust alternative to testIndReg for the case of continuous-mixed

(or continuous-continuous) variables is the testIndRQ. If the target variable consists of

proportions or percentages (within the (0, 1) interval), the logit transformation is applied

beforehand.

5. testIndBeta. When the target is proportion (or percentage, i.e., between 0 and 1, not

inclusive) the user can fit a regression model assuming a beta distribution [5]. The predictor

variables can be either continuous, categorical or mixed.

6. testIndPois. When the target is discrete, and in specific count data, the default test is

via the Poisson regression. The predictor variables can be either continuous, categorical or

mixed.

7. testIndNB. As an alternative to the Poisson regression, we have included the Negative

binomial regression to capture cases of overdispersion [8]. The predictor variables can be

either continuous, categorical or mixed.

8. testIndZIP. When the number of zeros is more than expected under a Poisson model, the

zero inflated poisson regression is to be employed [10]. The predictor variables can be either

continuous, categorical or mixed.

9. testIndLogistic. When the target is categorical with only two outcomes, success or failure

for example, then a binary logistic regression is to be used. Whether regression or classifi-

cation is the task of interest, this method is applicable. The advantage of this over a linear

or quadratic discriminant analysis is that it allows for categorical predictor variables as well

and for mixed types of predictors.

10. testIndMultinom. If the target has more than two outcomes, but it is of nominal type

(political party, nationality, preferred basketball team), there is no ordering of the outcomes,
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multinomial logistic regression will be employed. Again, this regression is suitable for clas-

sification purposes as well and it to allows for categorical predictor variables. The predictor

variables can be either continuous, categorical or mixed.

11. testIndOrdinal. This is a special case of multinomial regression, in which case the outcomes

have an ordering, such as not satisfied, neutral, satisfied. The appropriate method is

ordinal logistic regression. The predictor variables can be either continuous, categorical or

mixed.

12. testIndTobit (Tobit regression for left censored data). Suppose you have measurements for

which values below some value were not recorded. These are left censored values and by

using a normal distribution we can by pass this difficulty. The predictor variables can be

either continuous, categorical or mixed.

13. testIndBinom. When the target variable is a matrix of two columns, where the first one is

the number of successes and the second one is the number of trials, binomial regression is to

be used. The predictor variables can be either continuous, categorical or mixed.

14. gSquare. If all variables, both the target and predictors are categorical the default test is

the G2 test of independence. An alternative to the gSquare test is the testIndLogistic.

With the latter, depending on the nature of the target, binary, un-ordered multinomial or

ordered multinomial the appropriate regression model is fitted. The predictor variables can

be either continuous, categorical or mixed.

15. censIndCR. For the case of time-to-event data, a Cox regression model [4] is employed. The

predictor variables can be either continuous, categorical or mixed.

16. censIndWR. A second model for the case of time-to-event data, a Weibull regression model

is employed [14, 13]. Unlike the semi-parametric Cox model, the Weibull model is fully

parametric. The predictor variables can be either continuous, categorical or mixed.

17. censIndER. A third model for the case of time-to-event data, an exponential regression

model is employed. The predictor variables can be either continuous, categorical or mixed.

This is a special case of the Weibull model.

18. testIndIGreg. When you have non negative data, i.e. the target variable takes positive

values (including 0), a suggested regression is based on the the inverse Gaussian distribution.

The link function is not the inverse of the square root as expected, but the logarithm. This

is to ensure that the fitted values will be always be non negative. An alternative model

is the Weibull regression (censIndWR). The predictor variables can be either continuous,

categorical or mixed.

19. testIndGamma (Gamma regression). Gamma distribution is designed for strictly positive

data (greater than zero). It is used in reliability analysis, as an alternative to the Weibull

regression. This test however does not accept censored data, just the usual numeric data.

The predictor variables can be either continuous, categorical or mixed.
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20. testIndNormLog (Gaussian regression with a log link). Gaussian regression using the log

link (instead of the identity) allows non negative data to be handled naturally. Unlike the

gamma or the inverse gaussian regression zeros are allowed. The predictor variables can be

either continuous, categorical or mixed.

21. testIndClogit. When the data come from a case-control study, the suitable test is via con-

ditional logistic regression [7]. The predictor variables can be either continuous, categorical

or mixed.

22. testIndMVReg. In the case of multivariate continuous target, the suggested test is via

a multivariate linear regression. The target variable can be compositional data as well [1].

These are positive data, whose vectors sum to 1. They can sum to any constant, as long as

it the same, but for convenience reasons we assume that they are normalised to sum to 1. In

this case the additive log-ratio transformation (multivariate logit transformation) is applied

beforehand. The predictor variables can be either continuous, categorical or mixed.

23. testIndGLMMReg. In the case of a longitudinal or clustered target (continuous, propor-

tions within 0 and 1 (not inclusive) ), the suggested test is via a (generalised) linear mixed

model [12]. The predictor variables can only be continuous. This test is only applicable in

SES.temporal and MMPC.temporal.

24. testIndGLMMPois. In the case of a longitudinal or clustered target (counts), the suggested

test is via a (generalised) linear mixed model [12]. The predictor variables can only be

continuous. This test is only applicable in SES.temporal and MMPC.temporal.

25. testIndGLMMLogistic. In the case of a longitudinal or clustered target (binary), the

suggested test is via a (generalised) linear mixed model [12]. The predictor variables can

only be continuous. This test is only applicable in SES.temporal and MMPC.temporal.

To avoid any mistakes or wrongly selected test by the algorithms you are advised to select the

test you want to use. All of these tests can be used with SES and MMPC, forward and backward

regression methods. MMMB accepts only testIndFisher, testIndSpearman and gSquare. The

reason for this is that MMMB was designed for variables (dependent and predictors) of the same

type. For more info the user should see the help page of each function.

2.1 A more detailed look at some arguments of the feature selection algorithms

SES, MMPC, MMMB, forward and backward regression offer the option for robust tests (the

argument robust). This is currently supported for the case of Pearson correlation coefficient and

linear regression at the moment. We plan to extend this option to binary logistic and Poisson

regression as well. These algorithms have an argument user test. In the case that the user wants

to use his own test, for example, mytest, he can supply it in this argument as is, without ””.

For all previously mentioned regression based conditional independence tests, the argument works

as test=”testIndFisher”. In the case of the user test it works as user test=mytest. The max k
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argument must always be at least 1 for SES, MMPC and MMMB, otherwise it is a simple filtering

of the variables. The argument ncores offers the option for parallel implementation of the first

step of the algorithms. The filtering step, where the significance of each predictor is assessed. If

you have a few thousands of variables, maybe this option will do no significant improvement. But,

if you have more and a ”difficult” regression test, such as quantile regression (testIndRQ), then

with 4 cores this could reduce the computational time of the first step up to nearly 50%. For

the Poisson, logistic and normal linear regression we have included C++ codes to speed up this

process, without the use of parallel.

The FBED (Forward Backward Early Dropping) is a variant of the Forward selection is per-

formed in the first phase followed by the usual backward regression. In some, the variation is that

every non significant variable is dropped until no mre significant variables are found or there is no

variable left.

The forward and backward regression methods have a few different arguments.For example

stopping which can be either ”BIC” or ”adjrsq”, with the latter being used only in the linear

regression case. Every time a variable is significant it is added in the selected variables set. But,

it may be the case, that it is actually not necessary and for this reason we also calculate the BIC

of the relevant model at each step. If the difference BIC is less than the tol (argument) threshold

value the variable does not enter the set and the algorithm stops.

The forward and backward regression methods can proceed via the BIC as well. At every step

of the algorithm, the BIC of the relevant model is calculated and if the BIC of the model including

a candidate variable is reduced by more that the tol (argument) threshold value that variable is

added. Otherwise the variable is not included and the algorithm stops.

2.2 Other relevant functions

Once SES or MMPC are finished, the user might want to see the model produced. For this

reason the functions ses.model and mmpc.model can be used. If the user wants to get some

summarised results with MMPC for many combinations of max k and treshold values he can use

the mmpc.path function. Ridge regression (ridge.reg and ridge.cv) have been implemented.

Note that ridge regression is currently offered only for linear regression with continuous predictor

variables. As for some miscellaneous, we have implemented the zero inflated Poisson and beta

regression models, should the user want to use them.

2.3 Cross-validation

cv.ses and cv.mmpc perform a K-fold cross validation for most of the aforementioned regression

models. There are many metric functions to be used, appropriate for each case. The folds can be

generated in a stratified fashion when the dependent variable is categorical.
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3 Networks

Currently three algorithms for constructing Bayesian Networks (or their skeleton) are offered, plus

modifications.

� MMHC (Max-Min Hill-Climbing) [23], (mmhc.skel) which constructs the skeleton of the

Bayesian Network (BN). This has the option of running SES [18] instead.

� MMHC (Max-Min Hill-Climbing) [23], (local.mmhc.skel) which constructs the skeleton

around a selected node. It identifies the Parents and Children of that node and then finds

their Parents and Children.

� MMPC followed by the PC rules. This is the command mmpc.or.

� PC algorithm [15] (pc.skel for which the orientation rules (pc.or) have been implemented

as well. Both of these algorithms accept continuous only, categorical data only or a mix of

continuous, multinomial and ordinal. The skeleton of the PC algorithm has the option for

permutation based conditional independence tests [21].

� The functions ci.mm and ci.fast perform a symmetric test with mixed data (continuous,

ordinal and binary data) [17]. This is employed by the PC algorithm as well.

� Bootstrap of the PC algorithm to estimate the confidence of the edges (pc.skel.boot).

� PC skeleton with repeated measures (glmm.pc.skel). This uses the symetric test proposed

by [17] with generalised linear models.

� Skeleton of a network with continuous data using forward selection. The command corfs.network

does a similar to MMHC task. It goes to every variable and instead applying the MMPC

algorithm it applies the forward selection regression. All data must be continuous, since

the Pearson correlation is used. The algorithm is fast, since the forward regression with the

Pearson correlation is very fast.

We also have utility functions, such as

1. rdag and rdag2. Data simulation assuming a BN [3].

2. findDescendants and findAncestors. Descendants and ancestors of a node (variable) in

a given Bayesian Network.

3. dag2eg. Transforming a DAG into an essential (mixed) graph, its class of equivalent DAGs.

4. equivdags. Checking whether two DAGs are equivalent.

5. is.dag. In fact this checks whether cycles are present by trying to topologically sort the

edges. BNs do not allow for cycles.

6. mb. The Markov Blanket of a node (variable) given a Bayesian Network.
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7. nei. The neighbours of a node (variable) given an undirected graph.

8. undir.path. All paths between two nodes in an undirected graph.

9. transitiveClosure. The transitive closure of an adjacency matrix, with and without arrow-

heads.

10. bn.skel.utils. Estimation of false discovery rate [22], plus AUC and ROC curves based on

the p-values.

11. bn.skel.utils2. Estimation of the confidence of the edges [16], plus AUC and ROC curves

based on the confidences.

12. plotnetwork. Interactive plot of a graph.
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