Package ‘adaptsmoFMRI’

October 12, 2022

Type Package
Title Adaptive Smoothing of FMRI Data
Version 1.2
Date 2022-09-24
License GPL-2
Depends R(>= 4.2.0)
‘plot-weights-real.R’ ‘plot-weights-sim.R’
Imports methods, stats, spatstat, spatstat.geom, Matrix, coda, mvtnorm, MCMCpack, parallel
RoxygenNote 7.2.1
NeedsCompilation no
Author Maximilian Hughes [aut, cre, ctb]
Maintainer Maximilian Hughes <hughesgm@me.com>
Repository CRAN
Date/Publication 2022-09-25 10:30:05 UTC

R topics documented:
adaptsmoFMRI-package .. 2
adaptiveGMRF ... 3
adaptiveGMRF2COVAR .. 4
Adaptive smoothing functions for estimating the blood oxygenation level dependent (BOLD) effect by using functional Magnetic Resonance Imaging (fMRI) data, based on adaptive Gauss Markov random fields, for real as well as simulated data. The implemented models make use of efficient Markov Chain Monte Carlo methods.

Details

Package: adaptsmoFMRI
Type: Package
Version: 1.1
Date: 2022-08-16
License: GPL-2

Author(s)

Maximilian Hughes Maintainer: < Hughesgm@me.com >

References

Description

This function estimates the effects of functional MR Images (fMRI), with the method of efficient Markov Chain Monte Carlo (MCMC) simulation. The Metropolis Hastings (MH) algorithm is used for the non-approximate case and the Gibbs sampler for the approximate case.

Usage

```r
adaptiveGMRF(data, hrf, approximate = FALSE, K = 500, a = 0.001, b = 0.001, c = 0.001, d = 0.001, nu = 1, filter = NULL, block = 1, burnin = 1, thin = 1)
```

Arguments

- `data`: fMRI-data, needs to be an array of dimension $(dx \times dy \times T)$.
- `hrf`: haemodynamic response function, needs to be a vector of length T.
- `approximate`: logical, if TRUE then the approximate case is chosen. Default is FALSE.
- `K`: scalar, length of the MCMC path, hence iteration steps.
- `a`: scalar, shape hyperparameter of the inverse-gamma distribution of the variance parameter (σ_i^2).
- `b`: scalar, scale hyperparameter of the inverse gamma distribution of the variance parameter (σ_i^2).
- `c`: scalar, shape hyperparameter of the inverse gamma distribution of the precision parameter (τ).
- `d`: scalar, scale hyperparameter of the inverse gamma distribution of the precision parameter (τ).
- `filter`: scalar, a value between 0 and 1 defining to which extent the fMRI-data should be filtered. The corresponding formular is $\max(fmri) \times filter$.
- `nu`: scalar, shape and scale hyperparameter of the gamma distribution of the interaction weights (w_{ij}).
- `block`: scalar, when approximate==TRUE then a block of weights is updated at a time.
- `burnin`: scalar, defining the first iteration steps which should be omitted from MCMC path.
- `thin`: scalar, only every thin step of MCMC path is saved to output.

Value

- `dx`: scalar, number of pixels in x-direction.
- `dy`: scalar, number of pixels in y-direction.
- `I`: scalar, number of pixels.
coord matrix, coordinates of pixels.
NEI scalar, number of weights.
nei matrix, locations of weights in precision matrix.
mask matrix, masked out pixels.
beta.out matrix, MCMC path of covariates.
w.out matrix, MCMC path of weights.
sigma.out matrix, MCMC path of variance parameters.
tauk.out matrix, MCMC path of hyper parameters.

Note
This function is solely for one covariate and real data sets.

Author(s)
Maximilian Hughes

Examples

See example function for simulated data (one covariate).

adaptiveGMRF2COVAR Adaptive GMRF Model (Real Data)

Description
This function estimates the effects of functional MR Images (fMRI), with the method of efficient Markov Chain Monte Carlo (MCMC) simulation. The Metropolis Hastings (MH) algorithm is used for the non-approximate case and the Gibbs sampler for the approximate case.

Usage

adaptiveGMRF2COVAR(data, hrf, approximate = FALSE, K = 500, a = 0.001, b = 0.001, c = 0.001, d = 0.001, nu = 1, filter = NULL, block = 1, burnin = 1, thin = 1)

Arguments
data fMRI-data, needs to be an array of dimension (dx x dy x T).
hrf haemodynamic response function, needs to be a vector of length T.
approximate logical, if TRUE then the approximate case is choosen. Default is FALSE.
K scalar, length of the MCMC path, hence iteration steps.
a scalar, shape hyperparameter of the inverse-gamma distribution of the variance parameter (σ_i^2).
b scalar, scale hyperparameter of the inverse gamma distribution of the variance parameter (σ^2_i).

c scalar, shape hyperparameter of the inverse gamma distribution of the precision parameter (τ).

d scalar, scale hyperparameter of the inverse gamma distribution of the precision parameter (τ).

filter scalar, a value between 0 and 1 defining to which extent the fMRI-data should be filtered. The corresponding formula is $\max(f\text{mri}) \times \text{filter}$.

nu scalar, shape and scale hyperparameter of the gamma distribution of the interaction weights (w_{ij}).

block scalar, when approximate==TRUE then a block of weights is updated at a time.

burnin scalar, defining the first iteration steps which should be omitted from MCMC path.

thin scalar, only every thin step of MCMC path is saved to output.

Value

dx scalar, number of pixels in x-direction.

dy scalar, number of pixels in y-direction.

I scalar, number of pixels.

coord matrix, coordinates of pixels.

NEI scalar, number of weights.

nei matrix, locations of weights in precision matrix.

mask matrix, masked out pixels.

beta.out matrix, MCMC path of covariates.

w.out matrix, MCMC path of weights.

sigma.out matrix, MCMC path of variance parameters.

tauk.out matrix, MCMC path of hyper parameters.

Note

This function is solely for two covariates and real data sets.

Author(s)

Maximilian Hughes

Examples

See example function for simulated data (one covariate).
Description

The data set contains a synthetic spatiotemporal data set, hence a simulated data set. The data set is an array of dimension 20 x 20 x 210.

Value

No return value, called for side effects

Note

This data set was created while inserting one covariate.

Description

The data set contains a synthetic spatiotemporal data set, hence a simulated data set. The data set is an array of dimension 20 x 20 x 180.

Value

No return value, called for side effects

Note

This data set was created while inserting two covariates.
Description

This function estimates the effects of a synthetic spatiotemporal data set resembling functional MR Images (fMRI), with the method of efficient Markov Chain Monte Carlo (MCMC) simulation. The Metropolis Hastings (MH) algorithm is used for the non-approximate case and the Gibbs sampler for the approximate case.

Usage

```
sim.adaptiveGMRF(data, hrf, approximate = FALSE, K = 500, 
a = 1, b = 1, c = 1, d = 1, nu = 1, block = 1, burnin = 
1, thin = 1)
```

Arguments

- `data`: simulated fMRI-data, needs to be an array of dimension \((20 \times 20 \times T)\).
- `hrf`: haemodynamic response function, needs to be a vector of length \(T\).
- `approximate`: logical, if `TRUE` then the approximate case is chosen. Default is `FALSE`.
- `K`: scalar, length of the MCMC path, hence iteration steps.
- `a`: scalar, shape hyperparameter of the inverse-gamma distribution of the variance parameter \((\sigma_i^2)\).
- `b`: scalar, scale hyperparameter of the inverse gamma distribution of the variance parameter \((\sigma_i^2)\).
- `c`: scalar, shape hyperparameter of the inverse gamma distribution of the precision parameter \((\tau)\).
- `d`: scalar, scale hyperparameter of the inverse gamma distribution of the precision parameter \((\tau)\).
- `nu`: scalar, shape and scale hyperparameter of the gamma distribution of the interaction weights \((w_{ij})\).
- `block`: scalar, when `approximate=TRUE` then a block of weights is updated at a time.
- `burnin`: scalar, defining the first iteration steps which should be omitted from MCMC path.
- `thin`: scalar, only every `thin` step of MCMC path is saved to output.

Value

- `dx`: scalar, number of pixels in x-direction.
- `dy`: scalar, number of pixels in y-direction.
- `I`: scalar, number of pixels.
- `iter`: scalar, number of MCMC iterations.
coord matrix, coordinates of pixels.
nei matrix, locations of weights in precision matrix.
NEI scalar, number of weights.
beta.out matrix, MCMC path of covariates.
w.out matrix, MCMC path of weights.
sigma.out matrix, MCMC path of variance parameters.
tau.out matrix, MCMC path of hyper parameters.

Note
This function is solely for one covariate.

Author(s)
Maximilian Hughes

Examples

non-transformed hr-function
T <- 210
seq.length <- T*3
index <- seq(3, T*3, by = 3)
hrf <- rep(c(-0.5, 0.5), each=30, times=ceiling(T/30*1.5))
hrf <- as.matrix(hrf[index])
get simulated data
data("sim_fmri")
data <- data_simfmri
execute function
set.seed(111222)
K <- 2
a <- b <- c <- d <- nu <- 1
test.sim.adaptive <- sim.adaptiveGMRF(data, hrf, approximate=TRUE, K,
a, b, c, d, nu)
Usage

sim.adaptiveGMRF2COVAR(data, hrf, approximate = FALSE, K = 500, a = 1, b = 1, c = 1, d = 1, nu = 1, block = 1, burnin = 1, thin = 1)

Arguments

- **data**: simulated fMRI-data, needs to be an array of dimension (20 x 20 x T).
- **hrf**: haemodynamic response function, needs to be a vector of length T.
- **approximate**: logical, if TRUE then the approximate case is chosen. Default is FALSE.
- **K**: scalar, length of the MCMC path, hence iteration steps.
- **a**: scalar, shape hyperparameter of the inverse-gamma distribution of the variance parameter (σ_i^2).
- **b**: scalar, scale hyperparameter of the inverse gamma distribution of the variance parameter (σ_i^2).
- **c**: scalar, shape hyperparameter of the inverse gamma distribution of the precision parameter (τ).
- **d**: scalar, scale hyperparameter of the inverse gamma distribution of the precision parameter (τ).
- **nu**: scalar, shape and scale hyperparameter of the gamma distribution of the interaction weights (w_{ij}).
- **block**: scalar, when approximate=TRUE then a block of weights is updated at a time.
- **burnin**: scalar, defining the first iteration steps which should be omitted from MCMC path.
- **thin**: scalar, only every thin step of MCMC path is saved to output.

Value

- **dx**: scalar, number of pixels in x-direction.
- **dy**: scalar, number of pixels in y-direction.
- **I**: scalar, number of pixels.
- **iter**: scalar, number of MCMC iterations.
- **coord**: matrix, coordinates of pixels.
- **nei**: matrix, locations of weights in precision matrix.
- **NEI**: scalar, number of weights.
- **beta.out**: matrix, MCMC path of covariates.
- **w.out**: matrix, MCMC path of weights.
- **sigma.out**: matrix, MCMC path of variance parameters.
- **tauk.out**: matrix, MCMC path of hyper parameters.

Note

This function is solely for two covariates.
Author(s)
Maximilian Hughes

Examples

See example function for simulated data (one covariate).

sim.fmri

Simulate FMRI Data

Description
This function returns the synthetic spatiotemporal data set resembling functional MR Images (fMRI) data.

Usage

```
sim.fmri(hrf, beta)
```

Arguments

- `hrf` haemodynamic response function, needs to be a vector of length T.
- `beta` scalar, defines the height of the activated area, in form of a cylinder.

Details
The returned data is simulated on a 20 x 20 grid.

Value

- `fMRI` matrix, simulated fMRI data.

Note
This function is solely for one covariate.

Author(s)
Maximilian Hughes
Examples

non-transformed hr-function
T <- 210
seq.length <- T*3
index <- seq(3, T*3, by = 3)
hrf <- rep(c(-0.5, 0.5), each=30, times=ceiling(T/30*1.5))
hrf <- as.matrix(hrf[index])
define height of activation area
beta <- 3
use function to obtain fmri data
data <- sim.fmri(hrf, beta)$fmri

sim.fmri2COVAR

Simulate FMRI Data

Description

This function returns the synthetic spatiotemporal data set resembling functional MR Images (fMRI) data.

Usage

sim.fmri2COVAR(hrf, beta.Var1, beta.Var2)

Arguments

hrf haemodynamic response function, needs to be a vector of length T.
beta.Var1 scalar, defines the height of the activated area, in form of a cylinder of the first grid.
beta.Var2 scalar, defines the height of the activated area, in form of a cylinder of the second grid.

Details

The returned data is simulated on a 20 x 20 grid.

Value

fmri matrix, simulated fmri data.

Note

This function is solely for two covariates.

Author(s)

Maximilian Hughes
Examples

```r
# non-transformed hr-function
T <- 180
seq.length <- T*3
index <- seq(3, T*3, by = 3)
vis <- rep(c(-0.5, 0.5), each=30, times=ceiling(T/30*1.5))
vis <- as.matrix(vis[index])
aud <- rep(c(-0.5, 0.5), each=45, times=ceiling(T/30*1.5))
aud <- as.matrix(aud[index])
hrf <- cbind(vis,aud)
# define height of activation area
beta.Var1 <- beta.Var2 <- 3
# use function to obtain fmri data
data <- sim.fmri2COVAR(hrf, beta.Var1, beta.Var2)$fmri
```

sim.weightsplot
Plot Function for Weights (Simulated Data)

Description

This function plots the weights interacting between estimated effects for each pixel.

Usage

```r
sim.weightsplot(weights, nei, nx, ny, thresh = 0.05, ...)
```

Arguments

- `weights`
 matrix, containing MCMC-output the of posterior estimates of weights.
- `nei`
 matrix, locations of weights in precision matrix.
- `nx`
 scalar, number of pixels in x-direction.
- `ny`
 scalar, number of pixels in y-direction.
- `thresh`
 scalar, defining the threshold to which the median of the weights smaller than this threshold should be plotted.
- `...`
 graphical parameters for `image` can also be passed on as arguments to this function.

Value

No return value, called for side effects

Note

This function is solely for MCMC-outputs on simulated data.

Author(s)

Maximilian Hughes
weightsplot

Plot Function for Weights (Real Data)

Description
This function plots the weights interacting between estimated effects for each pixel.

Usage
weightsplot(weights, nei, nx, ny, coord, thresh = 0.1, ...)

Arguments
weights matrix, containing MCMC-output the of posterior estimates of weights.
nei, matrix, locations of weights in precision matrix.
rx, scalar, number of pixels in x-direction.
ny, scalar, number of pixels in y-direction.
coord, matrix, coordinates of pixels.
thresh, scalar, defining the threshold to which the median of the weights smaller than this threshold should be plotted.
..., graphical parameters for image can also be passed on as arguments to this function.

Value
No return value, called for side effects

Note
This function is solely for MCMC-outputs on real data.

Author(s)
Maximilian Hughes
Index

* package
 adaptsmoFMRI-package, 2

adaptiveGMRF, 3
adaptiveGMRF2COVAR, 4
adaptsmoFMRI (adaptsmoFMRI-package), 2
adaptsmoFMRI-package, 2

data_simfmri, 6
data_simfmri2COVAR, 6

sim.adaptiveGMRF, 7
sim.adaptiveGMRF2COVAR, 8
sim.fmri, 10
sim.fmri2COVAR, 11
sim.weightsplot, 12

weightsplot, 13