Package ‘benchden’

August 31, 2023

Type Package

Title 28 Benchmark Densities from Berlinet/Devroye (1994)

Version 1.0.8

Date 2023-08-31

Maintainer Thoralf Mildenberger <mild@zhaw.ch>

Description
Full implementation of the 28 distributions introduced as benchmarks for nonparametric density estimation by Berlinet and Devroye (1994) <https://hal.science/hal-03659919>. Includes densities, cdfs, quantile functions and generators for samples as well as additional information on features of the densities. Also contains the 4 histogram densities used in Rozenholc/Mildenberger/Gather (2010) <doi:10.1016/j.csda.2010.04.021>.

License GPL (>= 2)

URL https://github.com/thmild/benchden

NeedsCompilation no

Author Thoralf Mildenberger [aut, cre]
(<https://orcid.org/0000-0001-7242-1873>),
Henrike Weinert [aut] (<https://orcid.org/0000-0002-5043-1074>),
Sebastian Tiemeyer [aut]

Repository CRAN

Date/Publication 2023-08-31 08:50:05 UTC

R topics documented:

bberdev ... 2
berdev ... 4
bhisto ... 6
dberdev ... 7
dhisto ... 10
histo ... 11

Index 14
Some properties of 28 benchmark densities

Description

Names and points of nonsmoothness for the 28 distributions from Berlinet/Devroye (1994).

Usage

bberdev(dnum = 1)
nberdev(dnum = 1)

Arguments

 dnum number of distribution as in Berlinet/Devroye (1994), Section 3.2.

Details

These functions implement the 28 distributions from Berlinet and Devroye (1994), Section 3.2, which are:

dnum == 1 "uniform" on [0,1] as in stats-package

dnum == 2 "exponential" as in stats-package

dnum == 3 "Maxwell"

dnum == 4 "double exponential"

dnum == 5 "logistic" as in stats-package

dnum == 6 "Cauchy" as in stats-package

dnum == 7 "extreme value"

dnum == 8 "infinite peak"

dnum == 9 "Pareto"

dnum == 10 "symmetric Pareto"

dnum == 11 "normal" as in stats-package

dnum == 12 "lognormal"

dnum == 13 "uniform scale mixture"

dnum == 14 "Matterhorn"

dnum == 15 "logarithmic peak"

dnum == 16 "isosceles triangle"

dnum == 17 "beta 2,2" as in stats-package

dnum == 18 "chi-square 1" as in stats-package

dnum == 19 "normal cubed"

dnum == 20 "inverse exponential"
Value

nberdev gives the name of the distribution (the same as name in berdev).

bberdev Since evaluation of loss functions in nonparametric density estimation often requires numerical integration, bberdev returns a vector of points you should generally take care not to integrate over, e.g. points where the density is not continous or not differentiable (gives the same as breaks in berdev).

Author(s)

Thoralf Mildenberger, Henrike Weinert and Sebastian Tiemeyer

References

Examples

name of "Claw"-distribution
nberdev(dnum=23)
Some Properties of 28 benchmark densities

Description

Name, position of modes, support and points of nonsmoothness for the 28 distributions from Berlinet/Devroye (1994).

Usage

berdev(dnum = 1)

Arguments

- **dnum**: number of distribution as in Berlinet/Devroye (1994), Section 3.2.

Details

These functions implement the 28 distributions from Berlinet and Devroye (1994), Section 3.2, which are:

- `dnum == 1` "uniform" on [0,1] as in stats-package
- `dnum == 2"exponential" as in stats-package
- `dnum == 3"Maxwell"
- `dnum == 4"double exponential"
- `dnum == 5"logistic" as in stats-package
- `dnum == 6"Cauchy" as in stats-package
- `dnum == 7"extreme value"
- `dnum == 8"infinite peak"
- `dnum == 9"Pareto"
- `dnum == 10"symmetric Pareto"
- `dnum == 11"normal" as in stats-package
- `dnum == 12"lognormal"
- `dnum == 13"uniform scale mixture"
- `dnum == 14"Matterhorn"
- `dnum == 15"logarithmic peak"
- `dnum == 16"isosceles triangle"
- `dnum == 17"beta 2,2" as in stats-package
- `dnum == 18"chi-square 1" as in stats-package
- `dnum == 19"normal cubed"
- `dnum == 20"inverse exponential"
berdev

dnum == 21 "Marronite"
dnum == 22 "skewed bimodal"
dnum == 23 "claw"
dnum == 24 "smooth comb"
dnum == 25 "caliper"
dnum == 26 "trimodal uniform"
dnum == 27 "sawtooth"
dnum == 28 "bilogarithmic peak"

Value

berdev returns a list with components

name gives the name of the distribution,
peaks gives a vector of the positions of peaks or modes of the density, and
support gives a matrix as follows: in each row an interval is defined (with the first column giving the left and the second column the right end of the interval). Together the intervals give the support of the distribution (for most distributions only one interval).
b breaks Since evaluation of loss functions in nonparametric density estimation often requires numerical integration, berdev returns a vector of points you should generally take care not to integrate over, e.g. points where the density is not continuous or not differentiable.

Author(s)

Thoralf Mildenberger, Henrike Weinert and Sebastian Tiemeyer

References

Examples

position of peaks of "Claw"-distribution
berdev(dnum=23)$peaks

support of the "Trimodal uniform"
Description

Names and breakpoints for the 4 histogram benchmark distributions from Rozenholc/Mildenberger/Gather (2010).

Usage

bhisto(dnum = 1)

Arguments

dnum number of distribution.

Details

These functions implement the 4 histogram benchmark distributions from Rozenholc/Mildenberger/Gather (2010). Defined as the following mixtures of uniform distributions:

dnum == 1 5 bin regular histogram:

\[0.15 * U[0, 0.2] + 0.35 * U(0.2, 0.4) + 0.2 * U(0.4, 0.6) + 0.1 * U(0.6, 0.8) + 0.2 * U(0.8, 1.0) \]

dnum == 2 5 bin irregular histogram:

\[0.15 * U[0, 0.13] + 0.35 * U(0.13, 0.34) + 0.2 * U(0.34, 0.61) + 0.1 * U(0.61, 0.65) + 0.2 * U(0.65, 1.0) \]

dnum == 3 10 bin regular histogram:

\[
0.01 * U[0, 0.1] + 0.18 * U(0.1, 0.2) + 0.16 * U(0.2, 0.3) \\
+ 0.07 * U(0.3, 0.4) + 0.06 * U(0.4, 0.5) + 0.01 * U(0.5, 0.6) \\
+ 0.06 * U(0.6, 0.7) + 0.37 * U(0.7, 0.8) + 0.06 * U(0.8, 0.9) \\
+ 0.02 * U(0.9, 1.0)
\]

dnum == 4 10 bin irregular histogram:

\[
0.01 * U[0, 0.02] + 0.18 * U(0.02, 0.07) + 0.16 * U(0.07, 0.14) \\
+ 0.07 * U(0.14, 0.44) + 0.06 * U(0.44, 0.53) + 0.01 * U(0.53, 0.56) \\
+ 0.06 * U(0.56, 0.67) + 0.37 * U(0.67, 0.77) + 0.06 * U(0.77, 0.91) \\
+ 0.02 * U(0.91, 1.0)
\]

where \(U[a, b] \) denotes the uniform distribution on \([a, b]\).
Value

nhisto gives the name of the distribution (the same as name in histo).
bhisto gives the vector of break points (the same as breaks in histo).

Author(s)

Thoralf Mildenberger

References

Examples

name string of 5 bin regular histogram
nhisto(dnum=1)

Usage

dberdev(x,dnum = 1)
pberdev(q,dnum = 1)
qberdev(p,dnum = 1)
rberdev(n,dnum = 1)
Arguments

dnum number of distribution as in Berlinet/Devroye (1994), Section 3.2.
x, q vector of quantiles.
p vector of probabilities.
n number of observations.

Details

These functions implement the 28 distributions from Berlinet and Devroye (1994), Section 3.2, which are:
dnum == 1 "uniform" on [0,1] as in stats-package
dnum == 2 "exponential" as in stats-package
dnum == 3 "Maxwell"
dnum == 4 "double exponential"
dnum == 5 "logistic" as in stats-package
dnum == 6 "Cauchy" as in stats-package
dnum == 7 "extreme value"
dnum == 8 "infinite peak"
dnum == 9 "Pareto"
dnum == 10 "symmetric Pareto"
dnum == 11 "normal" as in stats-package
dnum == 12 "lognormal"
dnum == 13 "uniform scale mixture"
dnum == 14 "Matterhorn"
dnum == 15 "logarithmic peak"
dnum == 16 "isosceles triangle"
dnum == 17 "beta 2,2" as in stats-package
dnum == 18 "chi-square 1" as in stats-package
dnum == 19 "normal cubed"
dnum == 20 "inverse exponential"
dnum == 21 "Marronite"
dnum == 22 "skewed bimodal"
dnum == 23 "claw"
dnum == 24 "smooth comb"
dnum == 25 "caliper"
dnum == 26 "trimodal uniform"
dnum == 27 "sawtooth"
dnum == 28 "bilogarithmic peak"
Value

dberdev gives the density,
pberdev gives the distribution function,
qberdev gives the quantile function, and
rberdev generates random deviates.

Acknowledgement

The authors thank Luc Devroye for providing his original implementation for testing purposes.

Author(s)

Thoralf Mildenberger, Henrike Weinert and Sebastian Tiemeyer

References

Examples

histogram and true density of "Claw"-distribution
hist(rberdev(1000,dnum=23),breaks=100, main = "",freq=FALSE)
lines(seq(-3,3,0.01),dberdev(seq(-3,3,0.01),dnum=23),col="blue",lwd=2)
title(paste(nberdev(dnum=23)))

plot cdf of simulated data and the df of "Matterhorn"-distribution
plot.stepfun(rberdev(100,dnum=14),do.points=TRUE,main="")
lines(seq(-1,1,0.001),pberdev(seq(-1,1,0.001),dnum=14),col="blue")
title(paste(nberdev(dnum=14)))

plot quantiles of "smooth comb"-distribution
plot(qberdev(seq(0,1,0.01),dnum=24),t="l")
title(paste(nberdev(dnum=24)))
dhisto

4 histogram benchmark densities

Description

Density, distribution function, quantile function and random variate generation for the 4 histogram benchmark distributions from Rozenholc/Mildenberger/Gather (2010).

Usage

- `dhisto(x,dnum = 1)`
- `phisto(q,dnum = 1)`
- `qhisto(p,dnum = 1)`
- `rhisto(n,dnum = 1)`

Arguments

- `dnum` number of distribution as in Rozenholc/Mildenberger/Gather (2010)
- `x,q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations.

Details

These functions implement the 4 histogram benchmark distributions from Rozenholc/Mildenberger/Gather (2010). Defined as the following mixtures of uniform distributions:

dnum == 1
5 bin regular histogram:

\[
0.15 \times U[0, 0.2] + 0.35 \times U(0.2, 0.4] + 0.2 \times U(0.4, 0.6] + 0.1 \times U(0.6, 0.8] + 0.2 \times U(0.8, 1.0]
\]

dnum == 2
5 bin irregular histogram:

\[
0.15U[0, 0.13]+0.35U(0.13, 0.34]+0.2U(0.34, 0.61]+0.1U(0.61, 0.65]+0.2U(0.65, 1.0]
\]

dnum == 3
10 bin regular histogram:

\[
0.01 \times U[0, 0.1] + 0.18 \times U(0.1, 0.2] + 0.16 \times U(0.2, 0.3]
+0.07 \times U(0.3, 0.4] + 0.06 \times U(0.4, 0.5] + 0.01 \times U(0.5, 0.6]
+0.06 \times U(0.6, 0.7] + 0.37 \times U(0.7, 0.8] + 0.06 \times U(0.8, 0.9]
+0.02 \times U(0.9, 1.0]
\]

dnum == 4
10 bin irregular histogram:

\[
0.01 \times U[0, 0.02] + 0.18 \times U(0.02, 0.07] + 0.16 \times U(0.07, 0.14]
+0.07 \times U(0.14, 0.44] + 0.06 \times U(0.44, 0.53] + 0.01 \times U(0.53, 0.56]
+0.06 \times U(0.56, 0.67] + 0.37 \times U(0.67, 0.77] + 0.06 \times U(0.77, 0.91]
+0.02 \times U(0.91, 1.0]
\]

where \(U[a, b]\) denotes the uniform distribution on \([a, b]\).
Value

dhisto gives the density,
phisto gives the distribution function,
qhisto gives the quantile function, and
rhisto generates random deviates.

Author(s)

Thoralf Mildenberger

References

Examples

histogram and true density of "5 bin irregular"-distribution
hist(rhisto(2000,dnum=2), breaks=250, main = "",freq=FALSE)
lines(seq(0,1,0.01),dhisto(seq(0,1,0.01),dnum=2),col="blue",lwd=1)
title(paste("sample from",nhisto(dnum=2),"density"))

histo

Some properties of 4 histogram benchmark densities

Description

Name, position of modes, support and break points for the 4 histogram benchmark distributions from Rozenholc/Mildenberger/Gather (2010).

Usage

histo(dnum = 1)

Arguments

dnum number of distribution.
Details

These functions implement the 4 histogram benchmark distributions from Rozenholc/Mildenberger/Gather (2010). Defined as the following mixtures of uniform distributions:

- **dnum == 1** 5 bin regular histogram:
 \[0.15 \times U[0, 0.2] + 0.35 \times U(0.2, 0.4) + 0.2 \times U(0.4, 0.6) + 0.1 \times U(0.6, 0.8) + 0.2 \times U(0.8, 1.0)\]

- **dnum == 2** 5 bin irregular histogram:
 \[0.15 \times U[0, 0.13] + 0.35 \times U(0.13, 0.34] + 0.2 \times U(0.34, 0.61] + 0.1 \times U(0.61, 0.65] + 0.2 \times U(0.65, 1.0]\]

- **dnum == 3** 10 bin regular histogram:
 \[0.01 \times U[0, 0.1] + 0.18 \times U(0.1, 0.2] + 0.16 \times U(0.2, 0.3] + 0.07 \times U(0.3, 0.4] + 0.06 \times U(0.4, 0.5] + 0.01 \times U(0.5, 0.6] + 0.06 \times U(0.6, 0.7] + 0.37 \times U(0.7, 0.8] + 0.06 \times U(0.8, 0.9] + 0.02 \times U(0.9, 1.0]\]

- **dnum == 4** 10 bin irregular histogram:
 \[0.01 \times U[0, 0.02] + 0.18 \times U(0.02, 0.07] + 0.16 \times U(0.07, 0.14] + 0.07 \times U(0.14, 0.44] + 0.06 \times U(0.44, 0.53] + 0.01 \times U(0.53, 0.56] + 0.06 \times U(0.56, 0.67] + 0.37 \times U(0.67, 0.77] + 0.06 \times U(0.77, 0.91] + 0.02 \times U(0.91, 1.0]\]

where \(U[a, b]\) denotes the uniform distribution on \([a, b]\).

Value

`histo` returns a list with the following components:

- **name** gives the name of the distribution.
- **peaks** gives a vector of the positions of peaks of the density, defined here as mid points of maximal intervals.
- **support** gives a matrix with one row with the endpoints of the support, which is \([0, 1]\) for all four histogram densities.
- **breaks** gives the vector of break points.

Author(s)

Thoralf Mildenberger
References

Examples

```r
# position of peaks of the 5 bin irregular histogram density
histo(dnum=2)$peaks

# support of the 10 bin regular histogram density
histo(dnum=3)$support
```
Index

* datagen
 bberdev, 2
 berdev, 4
 bhisto, 6
 dberdev, 7
 dhisto, 10
 histo, 11

* distribution
 bberdev, 2
 berdev, 4
 bhist, 6
 dberdev, 7
 dhisto, 10
 histo, 11

* nonparametric
 bberdev, 2
 berdev, 4
 bhist, 6
 dberdev, 7
 dhisto, 10
 histo, 11
 bberdev, 2
 berdev, 4
 bhist, 6
 dberdev, 7
 dhisto, 10
 histo, 11
 nberdev (bberdev), 2
 nhisto (bhisto), 6
 pberdev (dberdev), 7
 phisto (dhisto), 10
 qberdev (dberdev), 7
 qhisto (dhisto), 10
 rberdev (dberdev), 7
 rhisto (dhisto), 10