Package ‘coloc’

May 13, 2023

Type Package

Imports data.table, ggplot2, methods, viridis, stats, grDevices,
 susieR (>= 0.12.06), utils

Suggests knitr, testthat, mvtnorm, magrittr, rmarkdown

Title Colocalisation Tests of Two Genetic Traits

Version 5.2.2

Date 2023-05-12

Maintainer Chris Wallace <cew54@cam.ac.uk>

Description Performs the colocalisation tests described in
 Giambartolomei et al (2013) <doi:10.1371/journal.pgen.1004383>,
 Wallace (2020) <doi:10.1371/journal.pgen.1008720>,
 Wallace (2021) <doi:10.1371/journal.pgen.1009440>.

License GPL

LazyLoad yes

VignetteBuilder knitr

RoxygenNote 7.2.3

Encoding UTF-8

URL https://github.com/chr1swallace/coloc

BugReports https://github.com/chr1swallace/coloc/issues

Collate 'coloc-package.R' 'boundaries.R' 'check.R' 'claudia.R'
 'plot.R' 'private.R' 'sensitivity.R' 'split.R' 'susie.R'
 'testdata.R' 'zzz.R'

Depends R (>= 3.5)

NeedsCompilation no

Author Chris Wallace [aut, cre],
 Claudia Giambartolomei [aut],
 Vincent Plagnol [ctb]

Repository CRAN

Date/Publication 2023-05-12 22:40:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>coloc-package</td>
<td>3</td>
</tr>
<tr>
<td>approx.bf.estimates</td>
<td>3</td>
</tr>
<tr>
<td>approx.bf.p</td>
<td>4</td>
</tr>
<tr>
<td>bin2lin</td>
<td>4</td>
</tr>
<tr>
<td>check_alignment</td>
<td>5</td>
</tr>
<tr>
<td>check_dataset</td>
<td>6</td>
</tr>
<tr>
<td>coloc.abf</td>
<td>7</td>
</tr>
<tr>
<td>coloc.bf_bf</td>
<td>8</td>
</tr>
<tr>
<td>coloc.detail</td>
<td>9</td>
</tr>
<tr>
<td>coloc.process</td>
<td>10</td>
</tr>
<tr>
<td>coloc.signals</td>
<td>12</td>
</tr>
<tr>
<td>coloc.susie</td>
<td>13</td>
</tr>
<tr>
<td>coloc.susie_bf</td>
<td>14</td>
</tr>
<tr>
<td>coloc_test_data</td>
<td>15</td>
</tr>
<tr>
<td>combine.abf</td>
<td>16</td>
</tr>
<tr>
<td>estgeno.1.ctl</td>
<td>17</td>
</tr>
<tr>
<td>est_cond</td>
<td>17</td>
</tr>
<tr>
<td>find_best.signal</td>
<td>18</td>
</tr>
<tr>
<td>findends</td>
<td>19</td>
</tr>
<tr>
<td>findpeaks</td>
<td>19</td>
</tr>
<tr>
<td>finemap.abf</td>
<td>20</td>
</tr>
<tr>
<td>finemap.bf</td>
<td>21</td>
</tr>
<tr>
<td>finemap.signals</td>
<td>22</td>
</tr>
<tr>
<td>logbf_to_pp</td>
<td>23</td>
</tr>
<tr>
<td>logdiff</td>
<td>23</td>
</tr>
<tr>
<td>logsum</td>
<td>24</td>
</tr>
<tr>
<td>map_cond</td>
<td>25</td>
</tr>
<tr>
<td>map_mask</td>
<td>25</td>
</tr>
<tr>
<td>plot.coloc_abf</td>
<td>26</td>
</tr>
<tr>
<td>plot_dataset</td>
<td>26</td>
</tr>
<tr>
<td>print.coloc_abf</td>
<td>28</td>
</tr>
<tr>
<td>process.dataset</td>
<td>28</td>
</tr>
<tr>
<td>runsusie</td>
<td>29</td>
</tr>
<tr>
<td>sdY.est</td>
<td>30</td>
</tr>
<tr>
<td>sensitivity</td>
<td>31</td>
</tr>
<tr>
<td>subset_dataset</td>
<td>32</td>
</tr>
<tr>
<td>Var.data</td>
<td>33</td>
</tr>
<tr>
<td>Var.data.cc</td>
<td>33</td>
</tr>
</tbody>
</table>

Index: 35
coloc-package

Colocalisation tests of two genetic traits

Description

Performs the colocalisation tests described in Plagnol et al (2009) and Wallace et al (2020) and draws some plots.

Author(s)

Chris Wallace cew54@cam.ac.uk

approx.bf.estimates

Internal function, approx.bf.estimates

Description

Internal function, approx.bf.estimates

Usage

approx.bf.estimates(z, V, type, suffix = NULL, sdY = 1)

Arguments

z normal deviate associated with regression coefficient and its variance
V its variance
type "quant" or "cc"
suffix suffix to append to column names of returned data.frame
sdY standard deviation of the trait. If not supplied, will be estimated.

Details

Calculate approximate Bayes Factors using supplied variance of the regression coefficients

Value

data.frame containing lABF and intermediate calculations

Author(s)

Vincent Plagnol, Chris Wallace
approx.bf.p

Description

Internal function, approx.bf.p

Usage

approx.bf.p(p, f, type, N, s, suffix = NULL)

Arguments

- **p**: p value
- **f**: MAF
- **type**: "quant" or "cc"
- **N**: sample size
- **s**: proportion of samples that are cases, ignored if type="quant"
- **suffix**: suffix to append to column names of returned data.frame

Details

Calculate approximate Bayes Factors

Value

data.frame containing lABF and intermediate calculations

Author(s)

Claudia Giambartolomei, Chris Wallace

bin2lin

Description

Binomial to linear regression conversion

Usage

bin2lin(D, doplot = FALSE)
check_alignment

Arguments

- **D**
 - standard format coloc dataset
- **doplot**
 - plot results if TRUE - useful for debugging

Details

Estimate beta and varbeta if a linear regression had been run on a binary outcome, given log OR and their variance + MAF in controls.

sets \(\beta = \frac{\text{cov}(x,y)}{\text{var}(x)} \)

\(\text{var}\beta = \frac{(\text{var}(y)/\text{var}(x) - \text{cov}(x,y)^2/\text{var}(x)^2)/N} \)

Value

D, with original beta and varbeta in beta.bin, varbeta.bin, and beta and varbeta updated to linear estimates

Author(s)

Chris Wallace

Description

check alignment between beta and LD

Usage

```r
check_alignment(D, thr = 0.2, do_plot = TRUE)
check.alignment(...)```

**Arguments**

- **D**
  - a coloc dataset
- **thr**
  - plot SNP pairs in absolute LD > thr
- **do_plot**
  - if TRUE (default) plot the diagnostic
- **...**
  - arguments passed to check_alignment()

**Value**

proportion of pairs that are positive

**Author(s)**

Chris Wallace
check_dataset

Description

Check coloc dataset inputs for errors

Usage

check_dataset(d, suffix = "", req = c("type", "snp"), warn.minp = 1e-06)

check.dataset(...) 

Arguments

d dataset to check
suffix string to identify which dataset (1 or 2)
req names of elements that must be present
warn.minp print warning if no p value < warn.minp
... arguments passed to check_dataset()

Details

A coloc dataset is a list, containing a mixture of vectors capturing quantities that vary between snps (these vectors must all have equal length) and scalars capturing quantities that describe the dataset.

Coloc is flexible, requiring perhaps only p values, or z scores, or effect estimates and standard errors, but with this flexibility, also comes difficulties describing exactly the combinations of items required.

Required vectors are some subset of

- **beta** regression coefficient for each SNP from dataset 1
- **varbeta** variance of beta
- **pvalues** P-values for each SNP in dataset 1
- **MAF** minor allele frequency of the variants
- **snp** a character vector of snp ids, optional. It will be used to merge dataset1 and dataset2 and will be retained in the results.

Preferably, give beta and varbeta. But if these are not available, sufficient statistics can be approximated from pvalues and MAF.

Required scalars are some subset of

- **N** Number of samples in dataset 1
- **type** the type of data in dataset 1 - either "quant" or "cc" to denote quantitative or case-control
- **s** for a case control dataset, the proportion of samples in dataset 1 that are cases
for a quantitative trait, the population standard deviation of the trait. If not given, it can be estimated from the vectors of \( \text{varbeta} \) and \( \text{MAF} \).

You must always give \text{type}. Then,

\[
\text{if type="cc" s} \\
\text{if type="quant" and sdY known sdY} \\
\text{if beta, varbeta not known N}
\]

If \( \text{sdY} \) is unknown, it will be approximated, and this will require

\text{summary data to estimate}\ \text{sdY beta, varbeta, N, MAF}

Optional vectors are

**position** a vector of snp positions, required for \text{plot_dataset}

check\_dataset calls `stop()` unless a series of expectations on dataset input format are met. This is a helper function for use by other coloc functions, but you can use it directly to check the format of a dataset to be supplied to coloc.abf(), coloc.signals(), finemap.abf(), or finemap.signals().

**Value**

NULL if no errors found

**Author(s)**

Chris Wallace

---

**Description**

Bayesian colocalisation analysis

**Usage**

coloc.abf(dataset1, dataset2, MAF = NULL, p1 = 1e-04, p2 = 1e-04, p12 = 1e-05)

**Arguments**

dataset1 a list with specifically named elements defining the dataset to be analysed. See check\_dataset for details.
dataset2 as above, for dataset 2
MAF Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
p1 prior probability a SNP is associated with trait 1, default 1e-4
p2 prior probability a SNP is associated with trait 2, default 1e-4
p12 prior probability a SNP is associated with both traits, default 1e-5
Details

This function calculates posterior probabilities of different causal variant configurations under the assumption of a single causal variant for each trait.

If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP’s MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.

Value

A list of two data.frames:

- summary is a vector giving the number of SNPs analysed, and the posterior probabilities of H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common causal variant).

- results is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal if H4 is true. This is only relevant if the posterior support for H4 in summary is convincing.

Author(s)

Claudia Giambartolomei, Chris Wallace

coloc.bf_bf

Coloc data through Bayes factors

description

Colocalise two datasets represented by Bayes factors

Usage

coloc.bf_bf(
  bf1,
  bf2,
  p1 = 1e-04,
  p2 = 1e-04,
  p12 = 5e-06,
  overlap.min = 0.5,
  trim_by_posterior = TRUE
)
Arguments

bf1 named vector of log BF, or matrix of BF with colnames (cols=snps, rows=signals)
bf2 named vector of log BF, or matrix of BF with colnames (cols=snps, rows=signals)
p1 prior probability a SNP is associated with trait 1, default 1e-4
p2 prior probability a SNP is associated with trait 2, default 1e-4
p12 prior probability a SNP is associated with both traits, default 1e-5
overlap.min see trim_by_posterior

trim_by_posterior it is important that the signals to be colocalised are covered by adequate numbers of snps in both datasets. If TRUE, signals for which snps in common do not capture least overlap.min proportion of their posteriors support are dropped and colocalisation not attempted.

Details

This is the workhorse behind many coloc functions

Value

coloc.signals style result

Author(s)

Chris Wallace

Description

Bayesian colocalisation analysis, detailed output

Usage

coloc.detail(  
dataset1,  
dataset2,  
MAF = NULL,  
p1 = 1e-04,  
p2 = 1e-04,  
p12 = 1e-05  
)
**Arguments**

- `dataset1`: a list with specifically named elements defining the dataset to be analysed. See `check_dataset` for details.
- `dataset2`: as above, for dataset 2
- `MAF`: Common minor allele frequency vector to be used for both `dataset1` and `dataset2`, a shorthand for supplying the same vector as parts of both datasets
- `p1`: prior probability a SNP is associated with trait 1, default 1e-4
- `p2`: prior probability a SNP is associated with trait 2, default 1e-4
- `p12`: prior probability a SNP is associated with both traits, default 1e-5

**Details**

This function replicates `coloc.abf`, but outputs more detail for further processing using `coloc.process`.

Intended to be called internally by `coloc.signals`.

**Value**

A list of three `data.tables`:

- `summary` is a vector giving the number of SNPs analysed, and the posterior probabilities of $H_0$ (no causal variant), $H_1$ (causal variant for trait 1 only), $H_2$ (causal variant for trait 2 only), $H_3$ (two distinct causal variants) and $H_4$ (one common causal variant).
- `df` is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal.
- `df3` is the same for all 2 SNP H3 models.

**Author(s)**

Chris Wallace

**See Also**

`coloc.process`, `coloc.abf`
Usage

```r
coloc.process(
 obj,
 hits1 = NULL,
 hits2 = NULL,
 LD = NULL,
 r2thr = 0.01,
 p1 = 1e-04,
 p2 = 1e-04,
 p12 = 1e-06,
 LD1 = LD,
 LD2 = LD,
 mode = c("iterative", "allbutone")
)
```

Arguments

- **obj**: object returned by `coloc.detail()`
- **hits1**: lead SNPs for trait 1. If length > 1, will use masking
- **hits2**: lead SNPs for trait 2. If length > 1, will use masking
- **LD**: named LD matrix (for masking)
- **r2thr**: r2 threshold at which to mask
- **p1**: prior probability a SNP is associated with trait 1, default 1e-4
- **p2**: prior probability a SNP is associated with trait 2, default 1e-4
- **p12**: prior probability a SNP is associated with both traits, default 1e-5
- **LD1**: named LD matrix (for masking) for trait 1 only
- **LD2**: named LD matrix (for masking) for trait 2 only
- **mode**: either "iterative" (default) - successively condition on signals or "allbutone" - find all putative signals and condition on all but one of them in each analysis

Value

data.table of coloc results

Author(s)

Chris Wallace
Description

New coloc function, builds on coloc.abf() by allowing for multiple independent causal variants per trait through conditioning or masking.

Usage

coloc.signals(
  dataset1,
  dataset2,
  MAF = NULL,
  LD = NULL,
  method = c("single", "cond", "mask"),
  mode = c("iterative", "allbutone"),
  p1 = 1e-04,
  p2 = 1e-04,
  p12 = NULL,
  maxhits = 3,
  r2thr = 0.01,
  pthr = 1e-06
)

Arguments

dataset1
  a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
dataset2
  as above, for dataset 2
MAF
  Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
LD
  required if method="cond". matrix of genotype correlation (ie r, not r^2) between SNPs. If dataset1 and dataset2 may have different LD, you can instead add LD=LD1 to the list of dataset1 and a different LD matrix for dataset2
method
  default "" means do no conditioning, should return similar to coloc.abf. if method="cond", then use conditioning to coloc multiple signals. if method="mask", use masking to coloc multiple signals. if different datasets need different methods (eg LD is only available for one of them) you can set method on a per-dataset basis by adding method="..." to the list for that dataset.
mode
  "iterative" or "allbutone". Easiest understood with an example. Suppose there are 3 signal SNPs detected for trait 1, A, B, C and only one for trait 2, D.

Under "iterative" mode, 3 coloc will be performed:
* trait 1 - trait 2
* trait 1 conditioned on A - trait 2
* trait 1 conditioned on A+B - trait 2

Under "allbutone" mode, they would be
* trait 1 conditioned on B+C - trait 2
* trait 1 conditioned on A+C - trait 2
* trait 1 conditioned on A+B - trait 2

Only iterative mode is supported for method="mask".

The allbutone mode is optimal if the signals are known with certainty (which they never are), because it allows each signal to be tested without influence of the others. When there is uncertainty, it may make sense to use iterative mode, because the strongest signals aren't affected by conditioning incorrectly on weaker secondary and less certain signals.

- **p1**: prior probability a SNP is associated with trait 1, default 1e-4
- **p2**: prior probability a SNP is associated with trait 2, default 1e-4
- **p12**: prior probability a SNP is associated with both traits, default 1e-5
- **maxhits**: maximum number of levels to condition/mask
- **r2thr**: if masking, the threshold on r2 should be used to call two signals independent. Our experience is that this needs to be set low to avoid double calling the same strong signal.
- **pthr**: if masking or conditioning, what p value threshold to call a secondary hit "significant"

**Value**

data.table of coloc results, one row per pair of lead snps detected in each dataset

**Author(s)**

Chris Wallace

---

**Description**

colocalisation with multiple causal variants via SuSiE
Usage

coloc.susie(
  dataset1,
  dataset2,
  back_calculate_lbf = FALSE,
  susie.args = list(),
  ...
)

Arguments

dataset1  either a coloc-style input dataset (see check_dataset), or the result of running runsusie on such a dataset

dataset2  either a coloc-style input dataset (see check_dataset), or the result of running runsusie on such a dataset

back_calculate_lbf
  by default, use the log Bayes factors returned by susie_rss. It is also possible to back-calculate these from the posterior probabilities. It is not advised to set this to TRUE, the option exists really for testing purposes only.

susie.args
  a named list of additional arguments to be passed to runsusie

...          other arguments passed to coloc.bf_bf, in particular prior values for causal association with one trait (p1, p2) or both (p12)

Value

  a list, containing elements

  * summary a data.table of posterior probabilities of each global hypothesis, one row per pairwise comparison of signals from the two traits
  * results a data.table of detailed results giving the posterior probability for each snp to be jointly causal for both traits assuming H4 is true. Please ignore this column if the corresponding posterior support for H4 is not high.
  * priors a vector of the priors used for the analysis

Author(s)

  Chris Wallace

coloc.susie_bf  run coloc using susie to detect separate signals

Description

  coloc for susie output + a separate BF matrix
Usage

```r
coloc.susie_bf(
 dataset1,
 bf2,
 p1 = 1e-04,
 p2 = 1e-04,
 p12 = 5e-06,
 susie.args = list(),
 ...
)
```

Arguments

- `dataset1`: a list with specifically named elements defining the dataset to be analysed. See `check_dataset` for details.
- `bf2`: named vector of log BF; names are snp ids and will be matched to column names of susie object’s alpha
- `p1`: prior probability a SNP is associated with trait 1, default 1e-4
- `p2`: prior probability a SNP is associated with trait 2, default 1e-4
- `p12`: prior probability a SNP is associated with both traits, default 1e-5
- `susie.args`: named list of arguments to be passed to `susieR::susie_rss()`
- `...`: other arguments passed to `coloc.bf_bf`, in particular prior values for causal association with one trait (p1, p2) or both (p12)

Value

coloc.signals style result

Author(s)

Chris Wallace

---

**coloc_test_data**

*Simulated data to use in testing and vignettes in the coloc package*

Description

Simulated data to use in testing and vignettes in the coloc package

Usage

```r
data(coloc_test_data)
```
Format

A four of two coloc-style datasets. Elements D1 and D2 have a single shared causal variant, and 50
SNPs. Elements D3 and D4 have 100 SNPs, one shared causal variant, and one variant unique to
D3. Use these as examples of what a coloc-style dataset for a quantitative trait should look like.

Examples

data(coloc_test_data)
names(coloc_test_data)
str(coloc_test_data$D1)
check_dataset(coloc_test_data$D1) # should return NULL if data structure is ok

combine.abf

Description

Internal function, calculate posterior probabilities for configurations, given logABFs for each SNP
and prior probs

Usage

combine.abf(l1, l2, p1, p2, p12, quiet = FALSE)

Arguments

l1 merged.df$lABF.df1
l2 merged.df$lABF.df2
p1 prior probability a SNP is associated with trait 1, default 1e-4
p2 prior probability a SNP is associated with trait 2, default 1e-4
p12 prior probability a SNP is associated with both traits, default 1e-5
quiet don’t print posterior summary if TRUE. default=FALSE

Value

named numeric vector of posterior probabilities

Author(s)

Claudia Giambartolomei, Chris Wallace
**Description**

Estimate single snp frequency distributions

**Usage**

```r
estgeno.1.ctl(f)
estgeno.1.cse(G0, b)
```

**Arguments**

- `f` MAF
- `G0` single snp frequency in controls (vector of length 3) - obtained from estgeno.1.ctl
- `b` log odds ratio

**Value**

relative frequency of genotypes 0, 1, 2

**Author(s)**

Chris Wallace

**See Also**

estgeno2

---

**est_cond**

`generate conditional summary stats`

**Description**

Internal helper function for est_all_cond

**Usage**

```r
est_cond(x, LD, YY, sigsnps, xtx = NULL)
```
find.best.signal

Arguments

- `x` coloc dataset
- `LD` named matrix of r
- `YY` sum((Y-Ybar)^2)
- `sigsnp` names of snps to jointly condition on
- `xtx` optional, matrix X'X where X is the genotype matrix. If not available, will be estimated from LD, MAF, beta and sample size (the last three should be part of the coloc dataset)

Value

data.table giving snp, beta and varbeta on remaining snps after conditioning

Author(s)

Chris Wallace

---

find.best.signal  
*Pick out snp with most extreme Z score*

Description

Internal helper function

Usage

find.best.signal(D)

Arguments

- `D` standard format coloc dataset

Value

- `z` at most significant snp, named by that snp id

Author(s)

Chris Wallace
**findends**

trim a dataset to central peak(s)

**Description**

tries to be smart about detecting the interesting subregion to finemap/coloc.

**Usage**

```r
findends(d, maxz = 4, maxr2 = 0.1, do.plot = FALSE)
```

**Arguments**

- `d` a coloc dataset
- `maxz` keep all snps between the leftmost and rightmost snp with $|z| > maxz$
- `maxr2` expand window to keep all snps between snps with $r^2 > maxr2$ with the left/rightmost snps defined by the maxz threshold
- `do.plot` if TRUE, plot dataset + boundaries

**Value**

logical vector of length d$position indicating which snps to keep

**Author(s)**

Chris Wallace

**See Also**

`findpeaks`

---

**findpeaks**

trim a dataset to only peak(s)

**Description**

tries to be smart about detecting the interesting subregion to finemap/coloc.

**Usage**

```r
findpeaks(d, maxz = 4, maxr2 = 0.1, do.plot = FALSE)
```
finemap.abf

Arguments

d | a coloc dataset
maxz | keep all snps between the leftmost and rightmost snp with $|z| > \text{maxz}$
maxr2 | expand window to keep all snps between snps with $r^2 > \text{maxr2}$ with the left/rightmost snps defined by the maxz threshold
do.plot | if TRUE, plot dataset + boundaries

Details

Differs from findends by finding multiple separate regions if there are multiple peaks

Value

logical vector of length d$position indicating which snps to keep

Author(s)

Chris Wallace

See Also

findends

Description

Bayesian finemapping analysis

Usage

finemap.abf(dataset, p1 = 1e-04)

Arguments

dataset | a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
p1 | prior probability a SNP is associated with the trait 1, default 1e-4

Details

This function calculates posterior probabilities of different causal variant for a single trait.
If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP’s MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.
Value

a data.frame:

- an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability of the SNP being causal

Author(s)

Chris Wallace

Description

Finemap one dataset represented by Bayes factors

Usage

finemap.bf(bf1, p1 = 1e-04)

Arguments

bf1  named vector of log BF, or matrix of log BF with colnames (cols=snps, rows=signals)

p1   prior probability a SNP is associated with the trait 1, default 1e-4

Details

This is the workhorse behind many finemap functions

Value

finemap.signals style result

Author(s)

Chris Wallace
finemap.signals

Finemap multiple signals in a single dataset

Description

This is an analogue to finemap.abf, adapted to find multiple signals where they exist, via conditioning or masking - ie a stepwise procedure

Usage

```r
finemap.signals(
 D,
 LD = D$LD,
 method = c("single", "mask", "cond"),
 r2thr = 0.01,
 sigsnps = NULL,
 pthr = 1e-06,
 maxhits = 3,
 return.pp = FALSE
)
```

Arguments

- **D**: list of summary stats for a single disease, see check_dataset
- **LD**: matrix of signed r values (not rsq!) giving correlation between SNPs
- **method**: if method="cond", then use conditioning to coloc multiple signals. The default is mask - this is less powerful, but safer because it does not assume that the LD matrix is properly allelically aligned to estimated effect
- **r2thr**: if mask==TRUE, all snps will be masked with r2 > r2thr with any sigsnps. Otherwise ignored
- **sigsnp**: SNPs already deemed significant, to condition on or mask, expressed as a numeric vector, whose names are the snp names
- **pthr**: when p > pthr, stop successive searching
- **maxhits**: maximum depth of conditioning. procedure will stop if p > pthr OR abs(z)<zthr OR maxhits hits have been found.
- **return.pp**: if FALSE (default), just return the hits. Otherwise return vectors of PP
- **mask**: use masking if TRUE, otherwise conditioning. defaults to TRUE

Value

list of successively significant fine mapped SNPs, named by the SNPs

Author(s)

Chris Wallace
**Description**

generic convenience function to convert logbf matrix to PP matrix

**Usage**

```
logbf_to_pp(bf, pi, last_is_null)
```

**Arguments**

- `bf`: an L by p or p+1 matrix of log Bayes factors
- `pi`: either a scalar representing the prior probability for any snp to be causal, or a full vector of per snp / null prior probabilities
- `last_is_null`: TRUE if last value of the bf vector or last column of a bf matrix relates to the null hypothesis of no association. This is standard for SuSiE results, but may not be for BF constructed in other ways.

**Value**

matrix of posterior probabilities, same dimensions as bf

**Author(s)**

Chris Wallace

---

**Description**

Internal function, logdiff

**Usage**

```
logdiff(x, y)
```

**Arguments**

- `x`: numeric
- `y`: numeric
Details
This function calculates the log of the difference of the exponentiated logs taking out the max, i.e. insuring that the difference is not negative

Value
max(x) + log(exp(x - max(x,y)) - exp(y-max(x,y)))

Author(s)
Chris Wallace

Description
Internal function, logsum

Usage
logsum(x)

Arguments
x numeric vector

Details
This function calculates the log of the sum of the exponentiated logs taking out the max, i.e. insuring that the sum is not Inf

Value
max(x) + log(sum(exp(x - max(x))))

Author(s)
Claudia Giambartolomei
---

**map_cond**

*find the next most significant SNP, conditioning on a list of sigsnps*

### Description

Internal helper function for finemap.signals

### Usage

```r
map_cond(D, LD, YY, sigsnps = NULL)
```

#### Arguments

- `D` : dataset in standard coloc format
- `LD` : named matrix of r
- `YY` : sum(y^2)
- `sigsnps` : names of snps to mask

#### Value

named numeric - Z score named by snp

### Author(s)

Chris Wallace

---

**map_mask**

*find the next most significant SNP, masking a list of sigsnps*

### Description

Internal helper function for finemap.signals

### Usage

```r
map_mask(D, LD, r2thr = 0.01, sigsnps = NULL)
```

#### Arguments

- `D` : dataset in standard coloc format
- `LD` : named matrix of r
- `r2thr` : mask all snps with r2 > r2thr with any in sigsnps
- `sigsnps` : names of snps to mask
Value

named numeric - Z score named by snp

Author(s)

Chris Wallace


describe

describe a coloc_abf object

describe a coloc dataset

Description

plot a coloc dataset

Usage

```r
S3 method for class 'coloc_abf'
plot(x, ...)
```

Arguments

- `x`: coloc_abf object to be plotted
- `...`: other arguments

Value

ggplot object

Author(s)

Chris Wallace
plot_dataset

Usage

plot_dataset(
  d,
  susie_obj = NULL,
  highlight_list = NULL,
  alty = NULL,
  ylab = "-log10(p)",
  show_legend = TRUE,
  color = c("dodgerblue2", "green4", "#6A3D9A", "#FF7F00", "gold1", "skyblue2",
            "#FB9A99", "palegreen2", "#CAB2D6", "#FDBF6F", "gray70", "khaki2", "maroon",
            "orchid1", "deeppink1", "blue1", "steelblue4", "darkturquoise", "green1", "yellow4",
            "yellow3", "darkerange4", "brown"),
  ...
)

plot_dataset(
  d,
  susie_obj = NULL,
  highlight_list = NULL,
  alty = NULL,
  ylab = "-log10(p)",
  show_legend = TRUE,
  color = c("dodgerblue2", "green4", "#6A3D9A", "#FF7F00", "gold1", "skyblue2",
            "#FB9A99", "palegreen2", "#CAB2D6", "#FDBF6F", "gray70", "khaki2", "maroon",
            "orchid1", "deeppink1", "blue1", "steelblue4", "darkturquoise", "green1", "yellow4",
            "yellow3", "darkerange4", "brown"),
  ...
)

Arguments

d       a coloc dataset
susie_obj optional, the output of a call to runsusie()
highlight_list optional, a list of character vectors. any snp in the character vector will be
              highlighted, using a different colour for each list.
alty    default is to plot a standard manhattan. If you wish to plot a different y value,
              pass it here. You may also want to change ylab to describe what you are plotting.
ylab    label for y axis, default is -log10(p) and assumes you are plotting a manhattan
show Legend optional, show the legend or not. default is TRUE
color    optional, specify the colours to use for each credible set when susie_obj is sup-
          plied. Default is shamelessly copied from susieR::susie_plot() so that colours
          will match
          ...

other arguments passed to the base graphics plot() function

Author(s)

Chris Wallace
print.coloc_abf

Description
Print summary of a coloc.abf run

Usage
## S3 method for class 'coloc_abf'
print(x, ...)

Arguments
- `x`: object of class `coloc_abf` returned by `coloc.abf()` or `coloc.signals()`
- `...`: optional arguments: "trait1" name of trait 1, "trait2" name of trait 2

Value
`x`, invisibly

Author(s)
Chris Wallace

process.dataset

Description
Internal function, process each dataset list for coloc.abf

Usage
process.dataset(d, suffix)

Arguments
- `d`: list
- `suffix`: "df1" or "df2"

Value
data.frame with log(abf) or log(bf)

Author(s)
Chris Wallace
run susie on a single coloc-structured dataset

Description

run susie_rss storing some additional information for coloc

Usage

```r
runsusie(
 d,
 suffix = 1,
 maxit = 100,
 repeat_until_convergence = TRUE,
 s_init = NULL,
 ...
)
```

Arguments

d coloc dataset, must include LD (signed correlation matrix) and N (sample size)
suffix suffix label that will be printed with any error messages
maxit maximum number of iterations for the first run of susie_rss(). If susie_rss() does not report convergence, runs will be extended assuming repeat_until_convergence=TRUE. Most users will not need to change this default.
repeat_until_convergence keep running until susie_rss() indicates convergence. Default TRUE. If FALSE, susie_rss() will run with maxit iterations, and if not converged, runsusie() will error. Most users will not need to change this default.
s_init used internally to extend runs that haven’t converged. don’t use.
... arguments passed to susie_rss. In particular, if you want to match some coloc defaults, set
  • prior_variance=0.2^2 (if a case-control trait) or (0.15/sd(Y))^2 if a quantitative trait
  • estimate_prior_variance=FALSE
otherwise susie_rss will estimate the prior variance itself

Value

results of a susie_rss run, with some added dimnames

Author(s)

Chris Wallace
Examples

```r
library(coloc)
data(coloc_test_data)
result=runsusie(coloc_test_data$D1)
summary(result)
```

---

**sdY.est**

*Estimate trait variance, internal function*

**Description**

Estimate trait standard deviation given vectors of variance of coefficients, MAF and sample size.

**Usage**

```r
sdY.est(vbeta, maf, n)
```

**Arguments**

- `vbeta`: vector of variance of coefficients
- `maf`: vector of MAF (same length as `vbeta`)
- `n`: sample size

**Details**

Estimate is based on $\text{var}(\hat{\beta}) = \frac{\text{var}(Y)}{n \times \text{var}(X)} \times \text{var}(X) = 2maf(1-maf)$ so we can estimate \text{var}(Y) by regressing $n\times\text{var}(X)$ against $1/\text{var}(\beta)$.

**Value**

Estimated standard deviation of $Y$.

**Author(s)**

Chris Wallace
sensitivity

Prior sensitivity for coloc

Description
Shows how prior and posterior per-hypothesis probabilities change as a function of p12

Usage
sensitivity(
  obj,
  rule = "",
  dataset1 = NULL,
  dataset2 = NULL,
  npoints = 100,
  doplot = TRUE,
  plot.manhattans = TRUE,
  preserve.par = FALSE,
  row = 1
)

Arguments
obj
output of coloc.detail or coloc.process

rule
a decision rule. This states what values of posterior probabilities "pass" some threshold. This is a string which will be parsed and evaluated, better explained by examples. "H4 > 0.5" says post prob of H4 > 0.5 is a pass. "H4 > 0.9 & H4/H3 > 3" says post prob of H4 must be > 0.9 AND it must be at least 3 times the post prob of H3.

dataset1
optional the dataset1 used to run SuSiE. This will be used to make a Manhattan plot if plot.manhattans=TRUE.

dataset2
optional the dataset2 used to run SuSiE. This will be used to make a Manhattan plot if plot.manhattans=TRUE.

npoints
the number of points over which to evaluate the prior values for p12, equally spaced on a log scale between p1*p2 and min(p1,p2) - these are logical limits on p12, but not scientifically sensible values.

doplot
draw the plot. set to FALSE if you want to just evaluate the prior and posterior matrices and work with them yourself

plot.manhattans
if TRUE, show Manhattans of input data

preserve.par
if TRUE, do not change par() of current graphics device - this is to allow sensitivity plots to be incorporated into a larger set of plots, or to be plot one per page on a pdf, for example

row
when coloc.signals() has been used and multiple rows are returned in the coloc summary, which row to plot
subset_dataset

Details

Function is called mainly for plotting side effect. It draws two plots, showing how prior and posterior probabilities of each coloc hypothesis change with changing p12. A decision rule sets the values of the posterior probabilities considered acceptable, and is used to shade in green the region of the plot for which the p12 prior would give an acceptable result. The user is encouraged to consider carefully whether some prior values shown within the green shaded region are sensible before accepting the hypothesis. If no shading is shown, then no priors give rise to an accepted result.

Value

list of 3: prior matrix, posterior matrix, and a pass/fail indicator (returned invisibly)

Author(s)

Chris Wallace

Description

Subset a coloc dataset

Usage

subset_dataset(dataset, index)

Arguments

dataset coloc dataset
index vector of indices of snps to KEEP

Value

a copy of dataset, with only the data relating to snps in index remaining

Author(s)

Chris Wallace
**Var.data**

**Description**

variance of MLE of beta for quantitative trait, assuming \( \text{var}(y)=1 \)

**Usage**

\texttt{Var.data}(f, N)

**Arguments**

- \( f \) : minor allele freq
- \( N \) : sample number

**Details**

Internal function

**Value**

variance of MLE beta

**Author(s)**

Claudia Giambartolomei

---

**Var.data.cc**

**Description**

variance of MLE of beta for case-control

**Usage**

\texttt{Var.data.cc}(f, N, s)

**Arguments**

- \( f \) : minor allele freq
- \( N \) : sample number
- \( s \) : ???
Details
   Internal function

Value
   variance of MLE beta

Author(s)
   Claudia Giambartolomei
Index

* datasets
  coloc_test_data, 15
* package
  coloc-package, 3
approx.bf.estimates, 3
approx.bfp, 4
bin2lin, 4
check.alignment (check_alignment), 5
check.dataset (check_dataset), 6
check_alignment, 5
check_dataset, 6, 7, 10, 12, 14, 15, 20, 22
coloc-package, 3
coloc.abf, 7, 10
coloc.bf.bf, 8, 14, 15
coloc.detail, 9
coloc.process, 10, 10
coloc.signals, 12
coloc.susie, 13
coloc.susie_bf, 14
coloc_test_data, 15
combine.abf, 16

est_cond, 17
estgeno.1.cse(estgeno.1.ctl), 17
estgeno.1.ctl, 17

find.best.signal, 18
findends, 19
findpeaks, 19
finemap.abf, 20
finemap.af, 21
finemap.signals, 22

logbf_to_pp, 23
logdiff, 23
logsum, 24
map_cond, 25

map_mask, 25
plot.coloc_abf, 26
plot_dataset, 26
print.coloc_abf, 28
process.dataset, 28
runsusie, 14, 29
sdY.est, 30
sensitivity, 31
subset_dataset, 32
Var.data, 33
Var.data.cc, 33