Package ‘combinat’

October 12, 2022

Version 0.0-8
Title combinatorics utilities
Author Scott Chasalow
Maintainer Vince Carey <stvjc@channing.harvard.edu>
Description routines for combinatorics
License GPL-2
Repository CRAN
Date/Publication 2012-10-29 08:58:26
NeedsCompilation no

R topics documented:

 combin 1
 dmmom 3
 hcube 3
 nsimplex 4
 permn 5
 rmultinomial 6
 x2u 7
 xsimplex 7

Index

combn Generate all combinations of the elements of x taken m at a time.
Description

Generate all combinations of the elements of `x` taken `m` at a time. If `x` is a positive integer, returns all combinations of the elements of `seq(x)` taken `m` at a time. If argument "fun" is not null, applies a function given by the argument to each point. If `simplify` is `FALSE`, returns a list; else returns a vector or an array. "..." are passed unchanged to function given by argument `fun`, if any.

`combn2`: Generate all combinations of the elements of `x` taken two at a time. If `x` is missing, generate all combinations of `1:n` taken two at a time (that is, the indices of `x` that would give all combinations of the elements of `x` if `x` with length `n` had been given). Exactly one of arguments "x" and "n" should be given; no provisions for function evaluation.

`nCm`: Compute the binomial coefficient ("n choose m"), where `n` is any real number and `m` is any integer. Arguments `n` and `m` may be vectors; they will be replicated as necessary to have the same length. Argument `tol` controls rounding of results to integers. If the difference between a value and its nearest integer is less than `tol`, the value returned will be rounded to its nearest integer. To turn off rounding, use `tol = 0`. Values of `tol` greater than the default should be used only with great caution, unless you are certain only integer values should be returned.

Usage

```r
combn(x, m, fun=NULL, simplify=TRUE, ...)
```

Arguments

- `x` vector source for combinations
- `m` number of elements
- `fun` function to be applied to each combination (may be null)
- `simplify` logical, if `FALSE`, returns a list, otherwise returns vector or array
- `...` args to `fun`

Details

Value

see `simplify` argument

Author(s)

Code by Scott Chasalow, R package and doc prep by Vince Carey, stvjc@channing.harvard.edu

References

~put references to the literature/web site here ~
Examples

```r
combn(letters[1:4], 2)
combn(10, 5, min)  # minimum value in each combination
# Different way of encoding points:
combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate, nbins = 4)
# Compute support points and (scaled) probabilities for a
# Multivariate-Hypergeometric(n = 3, N = c(4,3,2,1)) p.f.:
# table.mat(t(combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate, nbins=4)))
```

dmnom

密度的多参数分布，以及支持函数

Description

密度的多参数分布

Usage

```r
dmnom(x, size=sum(x), prob=stop("no prob arg"))
```

Arguments

- `x`: vector
- `size`: total
- `prob`: parameter vector (sums to 1)

Author(s)

code by Scott Chasalow, R pack and maint by VJ Carey <stvjc@channing.harvard.edu>

Examples

```r
dmnom(c(1,1,4,4),10,c(.2,.2,.3,.3))
```

hcube

生成所有点在一个超多面体晶格上。

Description

生成所有点在一个超多面体晶格上。

Usage

```r
hcube(x, scale, translation)
```
Arguments

x Argument x is an integer vector giving the extent of each dimension; the number of dimensions is $\text{length}(x)$.

scale Argument scale is a vector of real numbers giving an amount by which to multiply the points in each dimension; it will be replicated as necessary to have the same length as x.

translation Argument translation is a vector of real numbers giving an amount to translate (from the "origin", $\text{rep}(1,\text{length}(x))$) the points in each dimension; it will be replicated as necessary to have the same length as x. To use $\text{rep}(0,\text{length}(x))$ as the origin, use $\text{translation} = -1$. Scaling, if any, is done BEFORE translation.

Value

A $\text{prod}(x)$ by $\text{length}(x)$ numeric matrix; element (i,j) gives the location of point i in the jth dimension. The first column (dimension) varies most rapidly.

Author(s)

code by Scott Chasalow, R pack and maint by VJ Carey <stvjc@channing.harvard.edu>

References

~put references to the literature/web site here ~

See Also

fac.design, expand.grid

nsimplex Computes the number of points on a (p, n)-simplex lattice

Description

Computes the number of points on a (p, n)-simplex lattice; that is, the number of p-part compositions of n. This gives the number of points in the support space of a Multinomial(n, q) distribution, where $p = \text{length}(q)$.

Arguments p and n are replicated as necessary to have the length of the longer of them.

Usage

```r
nsimplex(p, n)
```
permn

Value

integer

Examples

nsimplex(3,5)

Description

Generates all permutations of the elements of x, in a minimal-change order. If x is a positive integer, returns all permutations of the elements of seq(x). If argument "fun" is not null, applies a function given by the argument to each point. "." are passed unchanged to the function given by argument fun, if any.

Usage

permn(x, fun=NULL, ...)

Arguments

x vector

fun if non.null, applied at each perm

... args passed to fun

Value

list: each component is either a permutation, or the results of applying fun to a permutation

References

See Also

sample, fact, combn, hcube, xsimplex
Examples

Convert output to a matrix of dim c(6, 720)
 t(array(unlist(permn(6)), dim = c(6, gamma(7))))
A check that every element occurs the same number of times in each
position
 apply(t(array(unlist(permn(6)), dim = c(6, gamma(7)))), 2, tabulate,
 nbins = 6)

Apply, on the fly, the diff function to every permutation
 t(array(unlist(permn(6, diff)), dim = c(5, gamma(7))))

Description

rmultinomial: Generate random samples from multinomial distributions, where both n and p may
vary among distributions

rmultz2: fixed p case

Usage

rmultinomial(n, p, rows=max(c(length(n), nrow(p))))
rmultz2(n, p, draws=length(n))

Arguments

n vector of sizes
p vector or probs
rows numeric giving desired number rows to be output
draws number samples required

Value

a matrix of rows rows delivering specified samples

Author(s)

John Wallace, 17 Feb 1997 S-news, mods by Chasalow

Examples

n <- c(100,20,10)
p <- matrix(c(.3,.1,.5,.1,.1,.2,.6,.8,.3),3)
rmultinomial(n,p)
x2u

Convert an x-encoded simplex-lattice point to a u-encoded simplex-lattice point

Description

Convert an x-encoded simplex-lattice point to a u-encoded simplex-lattice point (equivalently, "un-tabulate" bin counts)

Usage

\[
x2u(x, \text{labels}=\text{seq(along = x)})
\]

Arguments

- **x**: A numeric vector. \(x[i]\) is interpreted as the count in bin \(i\).
- **labels**: A vector. Interpreted as the bin labels; default value is \(\text{seq(along = x)}\), which causes return of a u-encoded simplex-lattice point. Other values of labels cause return of the result of subscripting labels with the u-encoded simplex-lattice point that would have been obtained if the default value of labels were used.

Value

\[
\text{rep(labels, x)}, \text{ a vector of length } \text{sum(x)}. \text{ If } \text{labels} = \text{seq(along = x)} \text{ (the default), value is the u-encoded translation of the simplex lattice point, } x. \text{ Equivalently, value gives the bin numbers, in lexicographic order, for the objects represented by the counts in } x. \text{ For other values of } \text{argument "labels"}, \text{ value gives the bin labels for the objects represented by the counts in } x \text{ (equivalent to } \text{labels}[x2u(x)]).$

See Also

- tabulate, rep

xsimplex

Generates all points on a (p,n) simplex lattice (i.e. a p-part composition of n).

Description

Generates all points on a \(p,n\) simplex lattice (i.e. a p-part composition of n). Each point is represented as \(x\), a \(p\)-dimensional vector of nonnegative integers that sum to \(n\). If argument "fun" is not null, applies a function given by the argument to each point. If simplify is FALSE, returns a list; else returns a vector or an array. "..." are passed unchanged to function given by argument fun, if any.
Usage
xsimplex(p, n, fun=NULL, simplify=TRUE, ...)

Arguments
- p: first parameter of lattice description
- n: second parameter of lattice description
- fun: function to be applied pointwise
- simplify: logical: if FALSE, value is a list, otherwise a vector or array
- ...: parameters to be passed to fun

Examples
Compute Multinomial(n = 4, pi = rep(1/3, 3)) p.f.:
xsimplex(3, 4, dmnom, prob=1/3)
Index

* models
 combin, 1
 dmmnom, 3
 hcube, 3
 nsimplex, 4
 permn, 5
 rmultinomial, 6
 x2u, 7
 xsimplex, 7

combin, 1
combn2 (combn), 1

dmmnom, 3

fact (dmmnom), 3

hcube, 3

logfact (dmmnom), 3

nCm (combin), 1
nsimplex, 4

permn, 5

rmultinomial, 6
rmultz2 (rmultinomial), 6

x2u, 7
xsimplex, 7