Package ‘dkDNA’

October 13, 2022

Type Package

Title Diffusion Kernels on a Set of Genotypes

Version 0.1.1

Date 2015-05-31

Author Gota Morota and Masanori Koyama

Maintainer Gota Morota <morota@unl.edu>

Description Compute diffusion kernels on DNA polymorphisms, including SNP and bi-allelic genotypes.

License GPL-2

URL http://morotalab.org/

ByteCompile true

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-06-01 01:05:22

R topics documented:

dkDNA-package ... 2
hypercube .. 2
snpgrid ... 3
snphamming .. 4

Index 6
Description
Compute diffusion kernels on DNA polymorphisms, including SNP and binary genotypes.

Author(s)
Gota Morota <morota@unl.edu> and Masanori Koyama <koyama.masanori@gmail.com>

References

hypercube

Description
This function constructs a diffusion kernel on a \(p \)-dimensional hypercube, where each genotype takes on two possible configurations. This graph is obtained by the \(p \)-Cartesian graph product of a complete graph \(K_2 \). It contains \(2^p \) vertices corresponding to sequences of genotypes, and two vertices are adjacent if and only if just one SNP locus differs.

Usage
hypercube(X, theta)

Arguments
- **X** A genotype matrix of \(n \) individuals with \(p \) bi-allelic genotypes \((n \times p)\).
- **theta** The rate of diffusion.

Value
Diffusion kernel matrix of size \(n \times n \). This can be viewed as a covariance among individuals given the diffusion rate.

Author(s)
Gota Morota <morota@unl.edu> and Masanori Koyama <koyama.masanori@gmail.com>
References

Examples

set a seed
set.seed(4321)

create a genotype matrix of 5 individuals with 10 bi-allelic genotypes
X <- matrix(sample(c(0,1), 50, prob=c(0.6,0.4), replace=TRUE), ncol=10)

set the rate of diffusion equal to 1
theta <- 1

compute a hypercube kernel
hypercube(X, theta)

snpgrid

Diffusion kernels on SNP genotypes

Description

This function construct a diffusion kernel on a p-dimensional SNP grid graph, where each genotype takes on three possible configurations, namely 0 ('aa'), 1 ('Aa'), and 2('AA'). This graph is obtained by the p-Cartesian graph product of a path graph 0-1-2. It contains 3^p vertices corresponding to sequences of genotypes, and two vertices are adjacent if and only if just one SNP locus differs by 1.

Usage

snpgrid(X, theta)

Arguments

X A genotype matrix of n individuals with p SNPs (n × p).
theta The rate of diffusion.

Value

Diffusion kernel matrix of size n × n. This can be viewed as a covariance among individuals given the diffusion rate.

Author(s)

Gota Morota <morota@unl.edu> and Masanori Koyama <koyama.masanori@gmail.com>
snphamming

References

See Also

snphamming

Examples

set a seed
set.seed(4321)

create a genotype matrix of 5 individuals with 10 SNPs
X <- matrix(sample(c(0,1,2), 50, prob=c(0.35, 0.3, 0.35), replace=TRUE), ncol=10)

set the rate of diffusion equal to 1
theta <- 1

compute a SNP grid kernel
snpgrid(X, theta)

snphamming

Diffusion kernels on SNP genotypes

Description

This function construct a diffusion kernel on a \(p \)-dimensional SNP hamming graph, where each genotype takes on three possible configurations, namely 0 ('aa'), 1 ('Aa'), and 2('AA'). This graph is obtained by the \(p \)-Cartesian graph product of a complete graph \(K_3 \). It contains \(3^p \) vertices corresponding to sequences of genotypes, and two vertices are adjacent if and only if just one SNP locus differs.

Usage

snphamming(X, theta)

Arguments

X A genotype matrix of \(n \) individuals with \(p \) SNPs (\(n \times p \)).
theta The rate of diffusion.
Value

Diffusion kernel matrix of size $n \times n$. This can be viewed as a covariance among individuals given the diffusion rate.

Author(s)

Gota Morota <morota@unl.edu> and Masanori Koyama <koyama.masanori@gmail.com>

References

See Also

snpgrid

Examples

```R
# set a seed
set.seed(4321)

# create a genotype matrix of 5 individuals with 10 SNPs
X <- matrix(sample(c(0,1,2), 50, prob=c(0.35, 0.3, 0.35), replace=TRUE),
             ncol=10)

# set the rate of diffusion equal to 1
theta <- 1

# compute a SNP hamming kernel
snphamming(X, theta)
```
Index

* graphs
 hypercube, 2
 snpgrid, 3
 snphamming, 4

* nonparametric
 hypercube, 2
 snpgrid, 3
 snphamming, 4

* package
 dkDNA-package, 2

 dkDNA (dkDNA-package), 2
 dkDNA-package, 2

 hypercube, 2

 snpgrid, 3, 5
 snphamming, 4, 4