Package ‘expm’

January 9, 2023

Type Package
Title Matrix Exponential, Log, 'etc'
Version 0.999-7
Date 2022-12-30
Contact expm-developers@lists.R-forge.R-project.org
Description Computation of the matrix exponential, logarithm, sqrt, and related quantities, using traditional and modern methods.
Depends Matrix
Imports methods
Suggests RColorBrewer, sfsmisc, Rmpfr
BuildResaveData no
License GPL (>= 2)
URL https://R-Forge.R-project.org/projects/expm/
BugReports https://R-forge.R-project.org/tracker/?atid=472&group_id=107
Encoding UTF-8
NeedsCompilation yes
Author Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Christophe Dutang [aut] (<https://orcid.org/0000-0001-6732-1501>), Vincent Goulet [aut] (<https://orcid.org/0000-0002-9315-5719>), Douglas Bates [ctb] (cosmetic clean up, in svn r42), David Firth [ctb] (expm(method=``PadeO'' and ``TaylorO'')), Marina Shapira [ctb] (expm(method=``PadeO'' and ``TaylorO'')), Michael Stadelmann [ctb] (``Higham08*'' methods, see ?expm.Higham08...)
Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Repository CRAN
Date/Publication 2023-01-09 14:30:02 UTC
\textbf{R topics documented:}

\begin{verbatim}
balance expAtv expm expm.Higham08 expmCond expmFrechet logm matpow matStig sqrtm
2 4 5 9 12 14 15 17 18 19
\end{verbatim}

\section*{Index}

\begin{verbatim}
Index
21
\end{verbatim}

\begin{verbatim}
\begin{tabular}{ll}
balance & \textit{Balance a Square Matrix via LAPACK's DGEBAL} \\
\end{tabular}
\end{verbatim}

\section*{Description}

Balance a square matrix via LAPACK's DGEBAL. This is an \texttt{R} interface, mainly used for experimentation.

This LAPACK routine is used internally for Eigenvalue decompositions, but also, in Ward(1977)'s algorithm for the matrix exponential.

The name \texttt{balance()} is preferred nowadays, and \texttt{dgeb()} has been deprecated (finally, after 9 years ...).

\section*{Usage}

\begin{verbatim}
balance(A, job = c("B", "N", "P", "S"))
Deprecated now:
dgeb(A, job = c("B", "N", "P", "S"))
\end{verbatim}

\section*{Arguments}

\begin{verbatim}
A a square \((n \times n)\) numeric matrix.
job a one-letter string specifying the 'job' for DGEBAL.
\end{verbatim}

\texttt{P} Permutation

\texttt{S} Scaling

\texttt{B} Both permutation and scaling

\texttt{N} None
Details

An excerpt of the LAPACK documentation about DGEBAL(), describing the result

$$i_1 \text{ ("ILO") (output) integer}$$

$$i_2 \text{ ("IHI") (output) integer}$$

1 and 2 are set to integers such that on exit \(z[i,j] = 0 \) if \(i > j \) and \(j = 1, ..., i_1 - 1 \) or \(i = i_2 + 1, ..., n \).

If \(\text{job} = 'N' \) or \('S'\), \(i_1 = 1 \) and \(i_2 = n \).

$$\text{scale} \text{ (output) numeric vector of length } n \text{. Details of the permutations and scaling factors applied to A. If } P[j] \text{ is the index of the row and column interchanged with row and column } j \text{ and } D[j] \text{ is the scaling factor applied to row and column } j \text{, then } scale[j] = P[j] \text{ for } j = 1, ..., i_1 - 1 = D[j] \text{ for } j = i_1, ..., i_2, = P[j] \text{ for } j = i_2 + 1, ..., n \text{. The order in which the interchanges are made is } n \text{ to } i_2+1, \text{ then } 1 \text{ to } i_1-1.}$$

Look at the LAPACK documentation for more details.

Value

A list with components

- **z**
 - the transformation of matrix \(A \), after permutation and or scaling.

- **scale**
 - numeric vector of length \(n \), containing the permutation and/or scale vectors applied.

- **i1, i2**
 - integers (length 1) in \(\{1, 2, ..., n\} \), denoted by ILO and IHI respectively in the LAPACK documentation. Only relevant for "P" or "B", they describe where permutations and where scaling took place; see the Details section.

Author(s)

Martin Maechler

References

LAPACK Reference Manual

See Also

- eigen, expm

Examples

```r
m4 <- rbind(c(-1,-1, 0, 0),
            c( 0, 0,10,10),
            c( 0, 0,10, 0),
            c( 0,10, 0, 0))
(b4 <- balance(m4))
```

--- for testing and didactical reasons : ----
demo(balanceTst) # also defines the balanceTst() function
which in its tests ``defines'' what
the return value means, notably (i1,i2,scale)

\[\exp(A t) \ast v \]

Description

Compute \(\exp(A t) \ast v \) directly, without evaluating \(\exp(A) \).

Usage

```r
expAtv(A, v, t = 1,
metho = "Sidje98",
rescaleBelow = 1e-6,
tol = 1e-07, btol = 1e-07, m.max = 30, mxrej = 10,
verbose = getOption("verbose"))
```

Arguments

- **A**: n x n matrix
- **v**: n - vector
- **t**: number (scalar);
- **method**: a string indicating the method to be used; there’s only one currently; we would like to add newer ones.
- **rescaleBelow**: if \(\text{norm}(A, "1") \) is smaller than rescaleBelow, rescale A to norm 1 and t such that \(A t \) remains unchanged. This step is in addition to Sidje’s original algorithm and easily seen to be necessary even in simple cases (e.g., \(n = 3 \)).
- **tol, btol**: tolerances; these are tuning constants of the “Sidje1998” method which the user should typically not change.
- **m.max, mxrej**: integer constants you should only change if you know what you’re doing
- **verbose**: flag indicating if the algorithm should be verbose..

Value

a list with components

- **eAtv**:fixme...

Author(s)

Ravi Varadhan, Johns Hopkins University; Martin Maechler (cosmetic, generalization to sparse matrices; rescaling (see rescaleBelow).
References

((NOT yet available!))

See Also

expm

Examples

```r
source(system.file("demo", "exact-fn.R", package = "expm"))
```#-> rnilMat(); xct10
set.seed(1)
(s5 <- Matrix(m5 <- rnilMat(5))); v <- c(1,6:9)
(em5 <- expm(m5))
r5 <- expAtv(m5, v)
r5. <- expAtv(s5, v)
stopifnot(all.equal(r5, r5., tolerance = 1e-14),
 all.equal(c(em5 %*% v), r5$eAtv))

v <- 10:1
with(xct10, all.equal(expm(m), expm))
all.equal(c(xct10$expm %*% v),
 expAtv(xct10$m, v)$eAtv)
```

expm

Matrix Exponential

Description

This function computes the exponential of a square matrix \( A \), defined as the sum from \( r = 0 \) to infinity of \( A^r / r! \). Several methods are provided. The Taylor series and Padé approximation are very importantly combined with scaling and squaring.

Usage

```r
expm(x, method = c("Higham08.b", "Higham08",
 "AlMohy-Hi09",
 "R_Eigen", "R_Pade", "R_Ward77", "hybrid_Eigen_Ward"),
 order = 8, trySym = TRUE, tol = .Machine$double.eps, do.sparseMsg = TRUE,
 preconditioning = c("2bal", "1bal", "buggy"))
```
Arguments

- **x**: a square matrix.
- **method**: "Higham08", "Ward\textquotesingle 77", "Pade" or "Taylor", etc; The default is now "Higham08" which uses Higham’s 2008 algorithm with additional balancing preconditioning, see `expm.Higham08`.

The versions with "*O" call the original Fortran code, whereas the first ones call the BLAS-using and partly simplified newer code.

- "R\_Pade" uses an R-code version of "Pade" for didactical reasons, and
- "R\_Ward\textquotesingle 77" uses an R version of "Ward\textquotesingle 77", still based on LAPACK’s dgebal, see R interface dgebal. This has enabled us to diagnose and fix the bug in the original octave implementation of "Ward\textquotesingle 77". "R\_Eigen" tries to diagonalise the matrix x, if not possible, "R\_Eigen" raises an error. "hybrid\_Eigen\_Ward" method also tries to diagonalise the matrix x, if not possible, it uses "Ward\textquotesingle 77" algorithm.

- **order**: an integer, the order of approximation to be used, for the "Pade" and "Taylor" methods. The best value for this depends on machine precision (and slightly on x) but for the current double precision arithmetic, one recommendation (and the Matlab implementations) uses $\text{order} = 6$ unconditionally; our default, 8, is from Ward(1977, p.606)’s recommendation, but also used for "AlMohy-Hi09" where a high order $\text{order}=12$ may be more appropriate (and slightly more expensive).

- **trySym**: logical indicating if method = "R\_Eigen" should use `isSymmetric(x)` and take advantage for (almost) symmetric matrices.

- **tol**: a given tolerance used to check if x is computationally singular when method = "hybrid\_Eigen\_Ward".

- **do.sparseMsg**: logical allowing a message about sparse to dense coercion; setting it FALSE suppresses that message.

- **preconditioning**: a string specifying which implementation of Ward(1977) should be used when method = "Ward\textquotesingle 77".

Details

The exponential of a matrix is defined as the infinite Taylor series

$$e^M = \sum_{k=1}^{\infty} \frac{M^k}{k!}.$$  

For the "Pade" and "Taylor" methods, there is an "accuracy" attribute of the result. It is an upper bound for the L2 norm of the Cauchy error $\expm(x, *, \text{order + 10}) - \expm(x, *, \text{order})$.

Currently, only algorithms which are "R-code only" accept sparse matrices (see the sparseMatrix class in package Matrix), i.e., currently only "R\_Eigen" and "Higham08".

Value

The matrix exponential of x.
Note

For a good general discussion of the matrix exponential problem, see Moler and van Loan (2003).

Author(s)

The "Ward77" method:
Vincent Goulet <vincent.goulet@act.ulaval.ca>, and Christophe Dutang, based on code translated by Doug Bates and Martin Maechler from the implementation of the corresponding Octave function contributed by A. Scottedward Hodel <A.S.Hodel@eng.auburn.edu>.

The "PadeRBS" method:
Roger B. Sidje, see the EXPOKIT reference.

The "Pade0" and "Taylor0" methods:
Marina Shapiro (U Oxford, UK) and David Firth (U Warwick, UK);

The "Pade" and "Taylor" methods are slight modifications of the "O" (O)riginal versions) methods, by Martin Maechler, using BLAS and LINPACK where possible.

The "hybrid_Eigen_Ward" method by Christophe Dutang is a C translation of "R_Eigen" method by Martin Maechler.

The "Higham08" and "Higham08.b" (current default) were written by Michael Stadelmann, see expm.Higham08.

The "AlMohy-Hi09" implementation (R code interfacing to stand-alone C) was provided and donated by Drew Schmidt, U. Tennesse.

References


See Also

The package vignette for details on the algorithms and calling the function from external packages.

expm.Higham08 for "Higham08".

expAtv(A,v,t) computes e^{At}v (for scalar t and n-vector v) directly and more efficiently than computing e^{At}.

Examples

x <- matrix(c(-49, -64, 24, 31), 2, 2)
expm(x)
expm(x, method = "AlMohy-Hi09")
## -----------------------------
### Test case 1 from Ward (1977)

```r
test1 <- t(matrix(c(4, 2, 0,
 1, 4, 1,
 1, 1, 4), 3, 3))

expm(test1, method="Pade")
```

---

Results on Power Mac G3 under Mac OS 10.2.8

```
[,1] [,2] [,3]
[1,] 147.86662244637000 183.76513864636857 71.79703239999643
[2,] 127.78108552318250 183.76513864636877 91.88256932318409
[3,] 127.78108552318204 163.67960172318047 111.96810624637124
```

-- these agree with ward (1977, p608)

---

Compare with the naive "R_Eigen" method:

```r
test1 <- t(matrix(c(4, 2, 0,
 1, 4, 1,
 1, 1, 4), 3, 3))

expm(test1, method="R_Eigen")
```

---

```
[,1] [,2] [,3]
[1,] 147.86662244637003 88.500223574029647 103.39983337000028
[2,] 127.78108552318220 117.345861552505600 90.70416537273444
[3,] 127.78108552318226 90.384173332156763 117.66579819582827
```

-- hopelessly inaccurate in all but the first column.

### Test case 2 from Ward (1977)

```r
test2 <- t(matrix(c(29.87942128909879, .7815750847907159, -2.289519314033932,
 .7815750847907159, 25.72656945571064, 8.680737820540137,
 -2.289519314033932, 8.680737820540137, 34.39400925519054),
 3, 3))

expm(test2, method="Pade")
```

---

```
[,1] [,2] [,3]
[1,] 5496313853692357 -18231880972009844 3047577080858028
[2,] -18231880972009852 60605228702227024 101291842930256144
[3,] -30475770808580244 101291842930249376 169294411240859072
```

-- which agrees with Ward (1977) to 13 significant figures

---

```
[,1] [,2] [,3]
[1,] 5496313853692405 -18231880972009100 30475770808580196
[2,] -18231880972009160 60605228702221760 101291842930249376
[3,] -30475770808580244 101291842930249200 169294411240858880
```

-- in this case a very similar degree of accuracy.

### Test case 3 from Ward (1977)

```r
test3 <- t(matrix(c(-131, 19, 18,
 -390, 56, 54,
 -387, 57, 52), 3, 3))

expm(test3, method="Pade")
```

---

```
[,1] [,2] [,3]
[1,] 101291842930256144 183.76513864636857 71.79703239999643
[2,] 127.78108552318250 183.76513864636877 91.88256932318409
[3,] 127.78108552318204 163.67960172318047 111.96810624637124
```

-- these agree with ward (1977, p608)

---

Try:

```r
expm(test3, method="R_Eigen")
```

)
expm(test3, method="Pade")
## [,1] [,2] [,3]
##[1,] -1.5096441587713636 0.36787943910439874 0.13533528117301735
##[2,] -5.6325707997970271 1.47151775847745725 0.40600584351567010
##[3,] -4.9349383260294299 1.10363831731417195 0.54134112675653534
## -- agrees to 10dp with Ward (1977), p608.

expm(test3, method="R_Eigen")
## [,1] [,2] [,3]
##[1,] -1.509644158796182 0.3678794391103086 0.13533528117547022
##[2,] -5.632570799902948 1.4715177585023838 0.40600584352641989
##[3,] -4.934938326098410 1.1036383173309319 0.54134112676302582
## -- in this case, a similar level of agreement with Ward (1977).
##
## Test case 4 from Ward (1977)
##
## test4 <-
## structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-10,
## 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
## 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
## 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
## 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
## 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
## 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
## 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
## 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
## .Dim = c(10, 10))
## attributes(expm(test4, method="Pade"))
## max(abs(expm(test4, method="Pade") - expm(test4, method="R_Eigen")))
#### [1] 8.746826694186494e-08
## -- here mexp2 is accurate only to 7 d.p., whereas mexp
## -- is correct to at least 14 d.p.
##
## Note that these results are achieved with the default
## settings order=8, method="Pade" -- accuracy could
## presumably be improved still further by some tuning
## of these settings.

## example of computationally singular matrix
##
m <- matrix(c(0,1,0,0), 2,2)
try(
expm(m, m="R_Eigen")
)
## error since m is computationally singular
expm(m, m="hybrid")
## hybrid use the Ward77 method
Description
Calculation of matrix exponential $e^A$ with the ‘Scaling & Squaring’ method with balancing. Implementation of Higham’s Algorithm from his book (see references), Chapter 10, Algorithm 10.20. The balancing option is an extra from Michael Stadelmann’s Masters thesis.

Usage
expm.Higham08(A, balancing = TRUE)

Arguments
A          square matrix, may be a “sparseMatrix”, currently only if balancing is false.
balancing  logical indicating if balancing should happen (before and after scaling and squaring).

Details
The algorithm comprises the following steps
1. 0. Balancing
2. 1. Scaling
3. 2. Padé-Approximation
4. 3. Squaring
5. 4. Reverse Balancing

Value
a matrix of the same dimension as $A$, the matrix exponential of $A$.

Author(s)
Michael Stadelmann (final polish by Martin Maechler).

References


See Also
For now, the other algorithms expm. This will change there will be one function with optional arguments to chose the method !. expmCond, to compute the exponential-condition number.
Examples

```r
The same examples as in ../expm.Rd {FIXME} --
Test case 1 from Ward (1977)

test1 <- t(matrix(c(4, 2, 0, 1, 4, 1, 1, 1, 4), 3, 3))
expm.Higham08(test1)
expm.Higham08(test1, balancing = FALSE)

Test case 2 from Ward (1977)

test2 <- t(matrix(c(29.87942128909879, .7815750847907159, -2.289519314033932, .7815750847907159, 25.7265945571064, 8.680737820540137, -2.289519314033932, 8.680737820540137, 34.39400925519054), 3, 3))
expm.Higham08(test2)
expm.Higham08(test2, balancing = FALSE)

Test case 3 from Ward (1977)

test3 <- t(matrix(c(-131, 19, 18, -390, 56, 54, -387, 57, 52), 3, 3))
expm.Higham08(test3)
expm.Higham08(test3, balancing = FALSE)

```

---

```
\[\begin{array}{ccc}
[1,] & 147.86662244637000 & 183.76513864636857 \\
[2,] & 127.78108552318250 & 183.76513864636877 \\
[3,] & 127.78108552318204 & 163.67960172318047 \\
\end{array} \]
\[\begin{array}{ccc}
[1,] & 549631.83563629405 & -18231880972009100 \\
[2,] & -18231880972009160 & 60605228702221760 \\
[3,] & -3047577080850244 & 101291842930249376 \\
\end{array} \]
\[\begin{array}{ccc}
[1,] & -1.509641587713636 & 0.36787943910439874 \\
[2,] & 0.135335281l7301735 & 0.40600584351567010 \\
[3,] & 0.54134112675653534 & 1.0363831731417195 \\
\end{array} \]
```

---

```
\[\text{-- these agree with ward (1977, p608)} \]
\[\text{-- in this case a very similar degree of accuracy.} \]
\[\text{-- agrees to 10dp with Ward (1977), p608. } \text{?? (FIXME)} \]
```
## Test case 4 from Ward (1977)
## ----------------------------

test4 <- 
structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-10,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
.Dim = c(10, 10))

E4 <- expm.Higham08(test4)
Matrix(zapsmall(E4))

S4 <- as(test4, "sparseMatrix") # some R based expm() methods work for sparse:
ES4 <- expm.Higham08(S4, bal=FALSE)
stopifnot(all.equal(E4, unname(as.matrix(ES4))))
## NOTE: Need much larger sparse matrices for sparse arith to be faster!

##
## example of computationally singular matrix
##
# m <- matrix(c(0,1,0,0), 2,2)
# eS <- expm.Higham08(m) # "works" (hmm ...)

---

**expmCond**

### Exponential Condition Number of a Matrix

#### Description

Compute the exponential condition number of a matrix, either with approximation methods, or exactly and very slowly.

#### Usage

```r
expmCond(A, method = c("1.est", "F.est", "exact"),
 expm = TRUE, abstol = 0.1, reltol = 1e-6,
 give.exact = c("both", "1.norm", "F.norm"))
```

#### Arguments

- `A`: a square matrix
- `method`: a string; either compute L-norm or F-norm approximations, or compute these exactly.
expmCond

expm

logical indicating if the matrix exponential itself, which is computed anyway, should be returned as well.

abstol, reltol

for method = "F.est", numerical ≥ 0, as absolute and relative error tolerance.

give.exact

for method = "exact", specify if only the 1-norm, the Frobenius norm, or both are to be computed.

Details

method = "exact", aka Kronecker-Sylvester algorithm, computes a Kronecker matrix of dimension \( n^2 \times n^2 \) and hence, with \( O(n^5) \) complexity, is prohibitely slow for non-small \( n \). It computes the exact exponential-condition numbers for both the Frobenius and/or the 1-norm, depending on give.exact.

The two other methods compute approximations, to these norms, i.e., estimate them, using algorithms from Higham, chapt.-3.4, both with complexity \( O(n^3) \).

Value

when expm = TRUE, for method = "exact", a list with components

- expm containing the matrix exponential, \( \text{expm.Higham08}(A) \).
- expmCond(F|1) numeric scalar, (an approximation to) the (matrix exponential) condition number, for either the 1-norm (expmCond1) or the Frobenius-norm (expmCondF).

When expm is false and method one of the approximations ("*.est"), the condition number is returned directly (i.e., numeric of length one).

Author(s)

Michael Stadelmann (final polish by Martin Maechler).

References


See Also

expm.Higham08 for the matrix exponential.
Examples

```r
set.seed(101)
(A <- matrix(round(rnorm(3^2),1), 3,3))
eA <- expm.Higham08(A)
stopifnot(all.equal(eA, expm::expm(A), tolerance= 1e-15))
C1 <- expmCond(A, "exact")
C2 <- expmCond(A, "1.est")
C3 <- expmCond(A, "F.est")
all.equal(C1$expmCond1, C2$expmCond, tolerance= 1e-15)# TRUE
all.equal(C1$expmCondF, C3$expmCond)# relative difference of 0.001...
```

expmFrechet

Frechet Derivative of the Matrix Exponential

Description

Compute the Frechet (actually ‘Fréchet’) derivative of the matrix exponential operator.

Usage

```r
expmFrechet(A, E, method = c("SPS", "blockEnlarge"), expm = TRUE)
```

Arguments

- **A**: square matrix \((n \times n)\).
- **E**: the “small Error” matrix, used in \(L(A, E) = f(A + E, A)\).
- **method**: string specifying the method / algorithm; the default "SPS" is “Scaling + Padé + Squaring” as in the algorithm 6.4 below; otherwise see the ‘Details’ section.
- **expm**: logical indicating if the matrix exponential itself, which is computed anyway, should be returned as well.

Details

Calculation of \(e^{A}\) and the Exponential Frechet-Derivative \(L(A, E)\).

When `method` = "SPS" (by default), the with the Scaling - Padé - Squaring Method is used, in an R-Implementation of Al-Mohy and Higham (2009)'s Algorithm 6.4.

**Step 1**: Scaling (of \(A\) and \(E\))

**Step 2**: Padé-Approximation of \(e^{A}\) and \(L(A, E)\)

**Step 3**: Squaring (reversing step 1)

`method = "blockEnlarge"` uses the matrix identity of

\[
f([AE; 0A]) = [f(A)Df(A); 0f(A)]
\]

for the \(2n \times 2n\) block matrices where \(f(A) := expm(A)\) and \(Df(A) := L(A, E)\). Note that "blockEnlarge" is much simpler to implement but slower (CPU time is doubled for \(n = 100\)).
logm

Value

a list with components

expm if expm is true, the matrix exponential \((n \times n)\) matrix.
Lexpm the Exponential-Frechet-Derivative \(L(A, E)\), a matrix of the same dimension.

Author(s)

Michael Stadelmann (final polish by Martin Maechler).

References

see expmCond.

See Also

expm.Higham08 for the matrix exponential. expmCond for exponential condition number computations which are based on expmFrechet.

Examples

```r
(A <- cbind(1, 2:3, 5:8, c(9,1,5,3)))
E <- matrix(1e-3, 4,4)
(L.AE <- expmFrechet(A, E))
all.equal(L.AE, expmFrechet(A, E, "block"), tolerance = 1e-14) ## TRUE
```

logm

Matrix Logarithm

Description

This function computes the (principal) matrix logarithm of a square matrix. A logarithm of a matrix \(A\) is \(L\) such that \(A = e^L\) (meaning \(A = \expm(L)\)), see the documentation for the matrix exponential, expm, which can be defined as

\[
e^L := \sum_{r=0}^{\infty} \frac{L^r}{r!}.
\]

Usage

```r
logm(x, method = c("Higham08", "Eigen"),

tol = .Machine$double.eps)
```
Arguments

- **x**: a square matrix.
- **method**: a string specifying the algorithmic method to be used. The default uses the algorithm by Higham(2008). The simple "Eigen" method tries to diagonalise the matrix x; if that is not possible, it raises an error.
- **tol**: a given tolerance used to check if x is computationally singular when method = "Eigen".

Details

The exponential of a matrix is defined as the infinite Taylor series

\[ e^M = \sum_{k=1}^{\infty} \frac{M^k}{k!}. \]

The matrix logarithm of A is a matrix M such that \( e^M = A \). Note that there typically are an infinite number of such matrices, and we compute the principal matrix logarithm, see the references.

Method "Higham08" works via “inverse scaling and squaring”, and from the Schur decomposition, applying a matrix square root computation. It is somewhat slow but also works for non-diagonalizable matrices.

Value

A matrix ‘as x’ with the matrix logarithm of x, i.e., `all.equal( expm(logm(x)), x, tol)` is typically true for quite small tolerance tol.

Author(s)

Method "Higham08" was implemented by Michael Stadelmann as part of his master thesis in mathematics, at ETH Zurich; the "Eigen" method by Christophe Dutang.

References


See Also

- `expm`
Examples

```r
m <- diag(2)
logm(m)
expm(logm(m))
```

## Here, logm() is barely defined, and Higham08 has needed an amendment
## in order for not to loop forever:
D0 <- diag(x=c(1, 0.))
(L. <- logm(D0))
stopifnot(all.equal(D0, expm(L.)))

## A matrix for which clearly no logm(.) exists:
(m <- cbind(1:2, 1))
(l.m <- try(logm(m))) ## all NA (Warning in sqrt(S[ij, ij]) : NaNs produced)
## on r-patched-solaris-x86, additionally gives
## Error in solve.default(X[ii, ii] + X[ij, ij], S[ii, ij] - sumU) :
## system is computationally singular: reciprocal condition number = 0
## Calls: logm ... logm.Higham08 -> rootS -> solve -> solve -> solve.default
if(!inherits(l.m, "try-error")) stopifnot(is.na(l.m))
## The "Eigen" method `"works' but wrongly:
expm(logm(m, "Eigen"))
```

matpow

Matrix Power

Description

Compute the k-th power of a matrix. Whereas x^k computes *element wise* powers, $x %^% k$ corresponds to $k - 1$ matrix multiplications, $x %*% x %*% \ldots %*% x$.

Usage

```r
x %^% k
```

Arguments

- `x`: a square *matrix*.
- `k`: an integer, $k \geq 0$.

Details

Argument k is coerced to integer using `as.integer`.

The algorithm uses $O(\log_2(k))$ matrix multiplications.

Value

A matrix of the same dimension as x.
Note

If you think you need \(x^k \) for \(k < 0 \), then consider instead \(\text{solve}(x \%\% (-k)) \).

Author(s)

Based on an R-help posting of Vicente Canto Casasola, and Vincent Goulet’s C implementation in `actuar`.

See Also

\(\%\% \) for matrix multiplication.

Examples

```r
A <- cbind(1, 2 * diag(3)[,-1])
A
A \%\% 2
stopifnot(identical(A, A \%\% 1),
          A \%\% 2 == A \%\% A)
```

matStig

Stig’s “infamous” Example Matrix

Description

Stig Mortensen wrote on Oct 22, 2007 to the authors of the `Matrix` package with subject “Strange result from `expm`”. There, he presented the following 8 \(\times \) 8 matrix for which the `Matrix expm()` gave a “strange” result. As we later researched, the result indeed was wrong: the correct entries were wrongly permuted. The reason has been in the underlying source code in Octave from which it had been ported to `Matrix`.

Usage

```r
data(matStig)
```

Author(s)

Martin Maechler

Examples

```r
data(matStig)
as(matStig, "sparseMatrix") # since that prints more nicely.

## For more compact printing:
op <- options(digits = 4)
E1 <- expm(matStig, "Ward77", preconditioning="buggy") # the wrong result
as(E1, "sparseMatrix")
str(E2 <- expm(matStig, "Pade")) # the correct one (has "accuracy" attribute)
as(E2, "sparseMatrix")
attr(E2, "accuracy") <- NULL # don't want it below
E3 <- expm(matStig, "R_Eigen") # even that is fine here
all.equal(E1, E2) # not at all equal (rel.difference >= 1.)
stopifnot(all.equal(E3, E2)) # ==

##________ The "proof" that "Ward77" is wrong _________
M <- matStig
Et1 <- expm(t(M), "Ward77", precond= "buggy")
Et2 <- expm(t(M), "Pade"); attr(Et2, "accuracy") <- NULL
all.equal(Et1, t(E1)) # completely different (rel.diff ~ 1.7 (platform dep.))
stopifnot(all.equal(Et2, t(E2))) # the same (up to tolerance)

options(op)

---

sqrtm

**Matrix Square Root**

**Description**
This function computes the matrix square root of a square matrix. The sqrt of a matrix \( A \) is a square matrix \( S \) such that \( A = SS \).

**Usage**
sqrtm(x)

**Arguments**
x
- a square matrix.

**Details**
The matrix square root \( S \) of \( M \), \( S = sqrtm(M) \) is defined as one (the "principal") \( S \) such that \( SS = S^2 = M \) (in R, all.equal(S %*% S, M)).

The method works from the Schur decomposition.

**Value**
A matrix ‘as x’ with the matrix sqrt of \( x \).

**Author(s)**
Michael Stadelmann wrote the first version.
References


See Also

expm, logm

Examples

m <- diag(2)
sqrtm(m) == m # TRUE

(m <- rbind(cbind(1, diag(1:3)),2))
sm <- sqrtm(m)
sm
zapsmall(sm %*% sm) # Zap entries ~= 2e-16
stopifnot(all.equal(m, sm %*% sm))
Index

* algebra
  expAtv, 4
  expm, 5
  expm.Higham08, 10
  expmCond, 12
  expmFrechet, 14
  logm, 15
  sqrtm, 19
* arith
  balance, 2
  matpow, 17
* array
  balance, 2
  matpow, 17
  matStig, 18
* datasets
  matStig, 18
* math
  expAtv, 4
  expm, 5
  expm.Higham08, 10
  expmCond, 12
  expmFrechet, 14
  logm, 15
  sqrtm, 19
  %^% (matpow), 17
  %%%, 18
  as.integer, 17
  balance, 2
dgebal, 6
dgebal (balance), 2
eigen, 3
expAtv, 4, 7
expm, 3, 5, 10, 15, 16, 20
expm.Higham08, 6, 7, 9, 13, 15
expmCond, 10, 12, 15
expmv (expAtv), 4
isSymmetric, 6
list, 13
logm, 15, 20
matpow, 17
matrix, 17
matStig, 18
mexp (expm), 5
norm, 4
numeric, 13
sparseMatrix, 6, 10
sqrtm, 19