Package ‘genepi’
August 31, 2023

Type Package
Title Genetic Epidemiology Design and Inference
Version 1.0.3
Depends R (>= 2.0.0), stats
Author Venkatraman E. Seshan
Maintainer Venkatraman E. Seshan <seshanv@mskcc.org>
Description Package for Genetic Epidemiologic Methods Developed at MSKCC. It contains functions to calculate haplotype specific odds ratio and the power of two stage design for GWAS studies.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-08-31 16:30:02 UTC

R topics documented:

- genepi-package .. 1
- haplotypeOddsRatio .. 2
- twoStagePower .. 4

Index 6

genepi-package Functions for some genetic epidemiology methods.

Description

These functions provide code for genetic epidemiology methods developed at MSKCC. They currently include estimating haplotype disease risk and two stage designs for GWAS.

Details
There are two functions `haplotypeOddsRatio` and `twoStagePower` in this package. Package will be archived and functions added to clinfun package.

Author(s)
Venkatraman E. Seshan
Maintainer: Venkatraman E. Seshan <seshanv@mskcc.org>

References

haplotypeOddsRatio
Calculate haplotype disease risk.

Description
Haplotype disease risk is calculated resolving haplotype ambiguity and adjusting for covariates and population stratification.

Usage

```r
haplotypeOddsRatio(formula, gtypevar, data, stratvar=NULL, nsim=100, tol=1e-8)
```

S3 method for class 'haploOR'

```r
print(x, ...)
```

Arguments

- `formula` The formula for logistic regression without the haplotype variable.
- `gtypevar` The variable names in the data frame corresponding to the loci of interest. Each variables counts the number of mutant genotypes a subject has at that locus. Legal values are 0, 1, 2 & NA.
- `data` The name of the dataframe being analyzed. It should have all the variables in the formula as well as those in genotype and stratvar.
stratvar

Name of the stratification variable. This is used to account for population stratification. The haplotype frequencies are estimated within each stratum.

nsim

Variance should be inflated to account for inferred ambiguous haplotypes. The estimates are recalculated by simulating the disease haplotype copy number and variance added to average.

tol

Tolerance limit for the EM algorithm convergence.

x

Object of class haploOR.

... Other print options.

Details

This implements the method in the reference below.

Value

It is a list of class haploOR

- **call**
 The function call that produced this output.

- **coef**
 Table with estimated coefficients, standard error, Z-statistic and p-value.

- **var**
 Covariance matrix of the estimated log odds-ratios.

- **deviance**
 Average of the simulated deviances. Its theoretical properties are unknown.

- **aic**
 Average of the simulated aic.

- **null.deviance**
 Deviance of null model.

- **df.null**
 Degrees of freedom of null model.

- **df.residual**
 Degrees of freedom of full model.

The "print" method formats the results into a user-friendly table.

Author(s)

Venkatraman E. Seshan

References

Examples

```r
# simulated data with 2 loci haplotypes 1=00, 2=01, 3=10, 4=11
# control haplotype probabilities p[i] i=1,2,3,4
# haplotype pairs (i<=j) i=j: probs = p[i]^2 ; i<j: p[i]*p[j]
# p <- c(0.25, 0.2, 0.2, 0.35)
# p0 <- rep(0, 10)
# l <- 0
# for(i in 1:4) {for(j in i:4) {l <- l+1; p0[l] <- 2*p[i]*p[j]/(1+1*(i==j))}}
# controls <- as.numeric(cut(runif(1000), cumsum(c(0,p0)), labels=1:10))
```
twoStagePower

Calculate the power of a two stage design for GWAS

Description

Calculate the power of a two stage design for GWAS under sample size or cost constraints. Implements methods in the references below.

Usage

twoStagePower(n=NULL, Cost=NULL, m=5000, mu=0.045, mu.loc=0.5, p=0.10, f=NULL, relcost=1, true.needed=1, rho=0, rho0=0, nsim=2000)

Arguments

n The maximum sample size for the study.
Cost Maximum available resource. One of Cost or n must be specified.
m The number of markers in the study. Default is 5000. It will take a a long time to compute power for very large numbers e.g. 100000
mu The mean vector for the markers that are associated with endpoint.
mu.loc The locations of the true markers. Since the chromosome is mapped to the unit interval (0,1) the numbers should be between 0 and 1.
p The proportion of markers taken to the second stage. The default is 0.1 which is found to be optimal.
f The fraction of Cost or sample size allocated to the first stage. If not specified it uses 0.75 for the Cost constraint scenario and 0.5 for the sample size contraint scenario.
relcost Specifies how expensive it is to genotype in the second stage compared to the first stage.
twoStagePower

true_needed The number of markers selected in the end. Can be a maximum of length of mu.loc (or mu).

rho, rho0 correlation between markers

nsim Number of Monte Carlo replications to compute power.

Details
This implements the method in the reference below.

Value
It returns the power as a single numeric value

Author(s)
Jaya M. Satagopan & Venkatraman E. Seshan

References

Examples
twoStagePower(n=1000)
twoStagePower(Cost=1000)
Index

* design
twoStagePower, 4

* odds-ratio
 haplotypeOddsRatio, 2

* package
genepi-package, 1

* regression
 haplotypeOddsRatio, 2

genepi (genepi-package), 1
genepi-package, 1

haplotypeOddsRatio, 2

print.haploOR (haplotypeOddsRatio), 2

twoStagePower, 4