Package ‘geotopbricks’

August 9, 2023

Maintainer Emanuele Cordano <emanuele.cordano@gmail.com>
License GPL (>= 3)
Title An R Plug-in for the Distributed Hydrological Model GEOtop
Type Package
Author Emanuele Cordano
Description It analyzes raster maps and other information as input/output files from the Hydrological Distributed Model GEOtop. It contains functions and methods to import maps and other keywords from geotop.inpts file. Some examples with simulation cases of GEOtop 2.x/3.x are presented in the package. Any information about the GEOtop Distributed Hydrological Model source code is available on www.geotop.org. Technical details about the model are available in Endrizzi et al (2014) <https://gmd.copernicus.org/articles/7/2831/2014/gmd-7-2831-2014.html>.

Version 1.5.6.0
Date 2023-08-09
Repository CRAN
Depends R (>= 2.10), methods, raster, stringr, zoo, sf
Imports terra
Suggests soilwater
URL https://zenodo.org/record/8228413, www.geotop.org,
https://www.rendena100.eu/en/geotop-hydrological-model.html,
https://github.com/ecor/geotopbricks
RoxygenNote 7.2.3
NeedsCompilation no
Date/Publication 2023-08-09 18:20:02 UTC

R topics documented:

argsParser ... 2
bondone ... 3
argsParser

Parser of an argument string

Description

This command parses ...DESCRIPTION TO DO !!!

Usage

argsParser(option, args, sep = " ", novalue_response = NULL)
Arguments

- **option**: character strings containing options (or flag) whose values
- **args**: String containing all the arguments of an R script
- **sep**: separator character. Default is " ". If it is of length 2, the first is separator among different options, the second is between option name and its value.
- **novalue_response**: value used in case the option is missing. Default is NULL.

Examples

```r
args <- "--value 6 --fruit apple"
option <- "--fruit"
value <- argsParser(option=option, args=args)
option2 <- "--jobs"
value2 <- argsParser(option=option2, args=args)
value22 <- argsParser(option=option2, args=args, novalue_response="."/")
args_b <- "value=6 , fruit=apple"
option3 <- "value"
value <- argsParser(option=option3, args=args_b, sep=c("", "="))
```

Bondone Dataset

Description

It contains hourly meteorological data observed at MeteoTrentino T0327 station located at Monte Bondone-Viotte (Trentino, Easter Alps, Italy) from August 2004 to December 2012. The `zoo` object `meteo` contains:

- **Iprec**: Hourly Precipitation Depth expressed in millimeters
- **AirT**: Air Temperature expressed in Celsius Degree
- **RH**: Relative Humidity in PerCent
- **WinDir**: Wind Direction expressed in Degrees North Clockwise
- **WinSp**: Wind Direction expressed in meters per second
- **Swglob**: Short-Wave Radiation expressed in Watts per square meters

The corresponding time axis vector for each observation can be printed by typing `index(meteo)`.
Usage

data(bondone)

Format

Data frame, 'zoo' object

Details

This data set stores all meteorological information useful for a GEOtop simulation. The user can easily use the package with his/her own data after replacing the values of such variables.

Source

Original data are provided by Provincia Autonoma di Trento (https://www.meteotrentino.it/). This dataset is intended for research purposes only, being distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY.

Description

Added implementation for 'brick' S4 method
@title brick

Usage

```r
## S4 method for signature 'zoo'
brick(
x,
layer = 1,
timerange = NULL,
time = NULL,
rows = 1:nrow(x),
kr = NULL,
use.read.raster.from.url = TRUE
)
```

```r
## S4 method for signature 'GeotopRasterBrick'
brick(x)
```
brick.decimal.formatter

Arguments

x a 'zoo' object returned by function `pointer.to.maps.xyz.time` or `pointer.to.maps.xy.time` or a `GeotopRasterBrick-class` object

layer layer at which raster maps are imported. If is NULL, maps are no-zlayer distributed and zoo must be returend by `pointer.to.maps.xy.time`

timerange two-elements vector containing the time range at which geotop maps are imported

time vector of time instants at which geotop maps are imported

rows rows of zoo correspondig to the geotop maps that are imported. By default all rows of zoo are considered. It is calculated by time or timerange if they are not set as NULL.

crs coordinate system see `RasterBrick-class`

use.read.raster.from.url logical value. Default is TRUE. If TRUE the RasterLayer are read with `read.raster.from.url`, instead of `raster` (otherwise). It is recomended in case the files whose paths are contained in x are remote and are 'http' addresses. In this cases the stand-alone method `raster(x)` does not always work and `use.read.raster.from.url` is necessary.

Value

a `RasterBrick-class` containing the geopop maps indicated by x, which is already in a `GeotopRasterBrick-class` object or a 'zoo' object returned by function `pointer.to.maps.xyz.time` or `pointer.to.maps.xy.time`.

See Also

`getvalues.brick.at.depth`, `vertical.aggregate.brick.within.depth`

Examples

```r
# TON TOSS
# See the examples in the functions listed in the 'SeeAlso' section
```
Usage

brick.decimal.formatter(
 file = NULL,
 file_prefix,
 formatter = "%04d",
 file_extension = ".asc",
 nlayers = 10,
 use.read.raster.from.url = FALSE,
 crs = NULL,
 start.from.zero = FALSE
)

Arguments

file filename of the 'brick' files containing the decimal formatter. It is NULL by default, otherwise it replaces file_suffix, formatter and file_extension.

file_prefix character string suffix name of the 'brick' files.

formatter string value. Default is "%04d".

file_extension string value. Default is ".asc"

nlayers number of layers

use.read.raster.from.url logical value. Default is FALSE. (this is recommended in this function). If TRUE the RasterLayer are read with read.raster.from.url, instead of raster (otherwise). It is recommended in case the files whose paths are contained in x are remote and are 'http' addresses. In this cases the stand-alone method raster(x) does not always work and use.read.raster.from.url is necessary.

crs coordinate system see RasterBrick-class,brick, Default is NULL.

start.from.zero logical value. Default is FALSE. If TRUE the formatter starts from 0000, otherwise it starts from 0001.

Value

the output is returned as a RasterBrick-class object

Examples

library(geotopbricks)
library(raster)
file <- system.file("example_files/examples/snowthickness",package="geotopbricks")
file <- paste(file,"SnowThickness0000L%04d.asc",sep="/")
nlayers=15
nlayers <- 6 ## Only 6 layers are read to minimize the elapsed time of the example!!
b <- brick.decimal.formatter(file=file,nlayers=nlayers)
 nlayers(b)
 names(b)
Description

Extracts a brick or a raster layer from an output 3D Tensor or 2D map respectively.

Usage

```r
brickFromOutputSoil3DTensor(
  x,
  when,
  layers = "SoilLayerThicknesses",
  one.layer = FALSE,
  suffix = "L%04dN%04d.asc",
  time_formatter = "%N%04d",
  suffix_one.layer = "N%04d.asc",
  wpath = NULL,
  tz = "A",
  start_date_key = "InitDateDDMMYYYYhhmm",
  end_date_key = "EndDateDDMMYYYYhhmm",
  timestep = "OutputSoilMaps",
  use.read.raster.from.url = FALSE,
  crs = NULL,
  projfile = "geotop.proj",
  start.from.zero = FALSE,
  secondary.suffix = NULL,
  only.map.filename = FALSE,
  add_suffix_dir = NULL,
  ...
)
```

```r
rasterFromOutput2DMap(x, when, ...)
```

Arguments

- **x**: string. GEoTop keyword related to the 3D or 2D variable to be imported in R.
- **when**: POSIXct-class for date and time on which the variable `x` is requested.
- **layers**: number of soil layer or geotop keyword for soil layer (e.g. SoilLayerThicknesses or SoilFile). Default is SoilLayerThicknesses.
- **one.layer**: logical value. If TRUE a RasterLayer-class object is imported, otherwise a RasterBrick-class object is returned. Default for `brickFromOutputSoil3DTensor` is FALSE.
suffix
character string containing the decimal formatter used by GEOtop in the output file names. Default is "L%04dN%04.asc". A simple user is recommended not to modify the value of this argument and use the default value.

time_formatter, suffix_one.layer
character string (suffix_one.layer is used for 2Dxy map) containing the decimal formatter used by GEOtop in the output file names to indicate time instant. Default is "N%04.asc". A simple user is recommended not to modify the value of this argument and use the default value.

wpath, tz, use.read.raster.from.url
see get.geotop.inpts.keyword.value

start_date_key, end_date_key
initial and final dates and times of the GEOtop simulation or alternatively the respective keywords of *.inpts file (Default)

timestep
time step expressed in seconds every which the raster file has been created. It can be a string corresponding to the geotop keyword in the inpts file. Default value is "OutputSoilMaps".

crs, start.from.zero
see brick.decimal.formatter. If crs is not NULL (Default), projfile is ignored.

projfile
name of the *.proj file containing CRS information. See get.geotop.inpts.keyword.value. Default is "geotop.proj". If is NULL or NA or this file does not exist, it is not searched and read. In case use.read.raster.from.url is TRUE and no NULL or NA values are assigned, the *.proj file is searched.

secondary.suffix
String secondary suffix which can be added at the end of the Map file name (optional). Default is NULL and no secondary suffix is added.

only.map.filename
logical value. If it is TRUE, only map file names are returned and maps are not imported. Default is FALSE.

add_suffix_dir, ...
additional arguments for get.geotop.inpts.keyword.value or brickFromOutputSoil3DTensor

Details
These functions brickFromOutputSoil3DTensor and rasterFromOutput2DMap return 3D or 2D Raster-class objects respectively. rasterFromOutput2DMap is a wrapper function of brickFromOutputSoil3DTensor with the option one.layer=TRUE. The functions work with the following output keywords:

"SoilTempTensorFile",
"SoilAveragedTempTensorFile",
"SoilLiqContentTensorFile",
"SoilAveragedLiqContentTensorFile",
"SoilIceContentTensorFile",
"SoilAveragedIceContentTensorFile",
"SoilLiqWaterPressTensorFile"
"SoilTotWaterPressTensorFile" for *brickFromOutputSoil3DTensor*:
"FirstSoilLayerTempMapFile",
"FirstSoilLayerAveragedTempMapFile",
"FirstSoilLayerLiqContentMapFile",
"FirstSoilLayerIceContentMapFile",
"LandSurfaceWaterDepthMapFile",
"ChannelSurfaceWaterDepthMapFile",
"NetRadiationMapFile",
"InLongwaveRadiationMapFile",
"NetLongwaveRadiationMapFile",
"NetShortwaveRadiationMapFile",
"InShortwaveRadiationMapFile",
"DirectInShortwaveRadiationMapFile",
"ShadowFractionTimeMapFile",
"SurfaceHeatFluxMapFile",
"SurfaceSensibleHeatFluxMapFile",
"SurfaceLatentHeatFluxMapFile",
"SurfaceTempMapFile",
"PrecipitationMapFile",
"CanopyInterceptedWaterMapFile",
"SnowDepthMapFile",
"GlacierDepthMapFile",
"SnowMeltedMapFile",
"SnowSublMapFile",
"GlacierMeltedMapFile",
"GlacierSublimatedMapFile",
"AirTempMapFile",
"WindSpeedMapFile",
"WindDirMapFile",
"RelHumMapFile"add_suffix_dir=NULLe",
"SWEmapFile",
"GlacierWaterEqMapFile"
"SnowDurationMapFile",
"ThawedSoilDepthMapFile",
"ThawedSoilDepthFromAboveMapFile",
"WaterTableDepthMapFile",
"WaterTableDepthFromAboveMapFile",
"NetPrecipitationMapFile",
"EvapotranspirationFromSoilMapFile" for *rasterFromOutput2Dmap*.
Author(s)
Emanuele Cordano

See Also

get.geotop.inpts.keyword.value, brick.decimal.formatter

Examples

library(geotopbricks)
Not run:
The data containing in the link are only for educational use
wpath <- 'https://raw.githubusercontent.com/ecor/geotopbricks_doc/master/simulations/idroclim_test1'
URL path (RAW VERSION) of
https://github.com/ecor/geotopbricks_doc/tree/master/simulations/idroclim_test1
x <- "SoilLiqContentTensorFile"
tz <- "Etc/GMT-1"
when <- as.POSIXct("2002-03-22", tz=tz)

Not Run because it elapses too long time!!!
Please Uncomment the following lines to run by yourself!!!
NOT RUN because it elapses too long time!!!
Please Uncomment the following lines to run by yourself!!!
b <- brickFromOutputSoil3DTensor(x, when=when, wpath=wpath, tz=tz, use.read.raster.from.url=TRUE)

a 2D map:
x_e <- "SnowDepthMapFile"

Not Run: uncomment the following line
m <- rasterFromOutput2DMap(x_e, when=when, wpath=wpath, timestep="OutputSnowMaps",
 tz=tz, use.read.raster.from.url=TRUE)
NOTE: set use.read.raster.from.url=FALSE (default)
if the "wpath" directory is in the local file system.
Not Run: uncomment the following line
plot(m)

End(Not run)

color.bar
Graphic Representation of a Color bar, function written by John Colby

Description

Graphic Representation of a Color bar, function written by John Colby

Usage

color.bar(
lut,
min,
color.bar

```r
max = -min,
nticks = 11,
ticks = seq(min, max, len = nticks),
title = "",
width = 1.75,
height = 5,
ncolmax = 100,
digits = 4,
pdf = NULL
```

Arguments

- `width`, `height` width and height of the device
- `ncolmax` maximum number of colors. Default is 100.
- `digits` specified number of significant digits
- `pdf` character value for pdf output file. Default is NULL and no pdf file is created.

Note

This function is taken from https://stackoverflow.com/questions/9314658/colorbar-from-custom-colorramppalette. Please visit the URL for major details and give your feedback if possible.

Author(s)

References

Examples

```r
color.bar(colorRampPalette(c("light green", "yellow", "orange", "red"))(100), -1)
```
color.bar.raster

Graphic Representation of a Color legend of a Raster or GeotopbrickRaster object as a Color bar, inspired by the function written by John Colby

Description

Graphic Representation of a Color legend of a Raster or GeotopbrickRaster object as a Color bar, inspired by the function written by John Colby

Usage

```r
color.bar.raster(x, col, min = NA, max = NA, ...)
```

Arguments

- `x`
 a Raster or GeotopRasterBrick object
- `col`
 the color palette used
- `max`, `min`
 maximum and minimum value (used if you need to crop the scale legend within a certain interval)
- `...`
 arguments to be passed to `color.bar`

See Also

`color.bar.setMinMax`

Examples

```r
library(geotopbricks)

## Simulation working path
##file <- system.file("rendena100/SnowDepthMapFile-2014-MA-mean-winter-2013-2014.asc", 
##package="geotopbricks")
file <- paste0("https://raw.githubusercontent.com/ecor/geotopbricks_doc/master/template/", 
"rendena100/SnowDepthMapFile-2014-MA-mean-winter-2013-2014.asc")
snow <- raster(file)
min <- 0 # snow depth expressed in millimeters
max <- 2500 # snow depth expressed in millimeters
colors <- terrain.colors(1000)
color.bar.raster(x=snow,col=colors,digits=2)
color.bar.raster(x=snow,col=colors,min=min,max=max,digits=2)
```
create.geotop.inpts.keyword

Description

Creates an 'geotop.inpts' file with the keyword and their values of a data.frame like the one returned by declared.geotop.inpts.keywords

Usage

create.geotop.inpts.keyword(
 df,
 file = "geotop.inpts.copy",
 wpath = NULL,
 comment.lines = "default",
 header = "default",
 ...
)

Arguments

df The data frame returned by declared.geotop.inpts.keywords
file connection or file name where to write 'df'
wpath complete path to file (optional). Default is NULL.
comment.lines string or vector of strings to add as comments for each keyword. If it is NULL the comment lines are omitted.
header string or vector of strings to add as a header. If it is NULL the header is omitted.
... further arguments for writeLines

Details

In case comment.lines and header are set equal to "default", they are suitably modified within the function code. See the example output.

See Also

writeLines, declared.geotop.inpts.keywords
create.geotop.meteo.files

Creates geotop meteo files from (a list of) `zoo` objects

Description

Creates geotop meteo files from (a list of) `zoo` objects

Usage

create.geotop.meteo.files(
 x,
 format = "%d/%m/%Y %H:%M",
 file_prefix = "meteo",
 file_extension = ".txt",
 formatter = "%04d",
 na = "-9999",
 col.names = TRUE,
 row.names = FALSE,
 date_field = "Date",
 sep = ",",
 level = NULL,
 quote = FALSE,
 ...
)

Arguments

x 'zoo' object or a list of `zoo` object representing the meteorological station
format string format representing the date, see `as.POSIXlt`. Default is "%d/%m/%Y %H:%M" (which is the same format used in geotop.inpts keyword InitDateDDMMYYYYhhmm)
declared.geotop.inpts.keywords

file_prefix string containing file prefix (full path). It corresponds to the value of the `geotop.inpts` keyword `MeteoFile`.

file_extension string containing the extensions of final files. Default is c(".txt").

formatter string value. It is the decimal formatter contained in the file name and used in case the tabular data are referred at several points. Default is "%04d". See `sprintf`.

na NA value indicator. Default is "-9999". See `write.table`.

col.names logical parameter. Default is TRUE. See `write.table`.

row.names logical parameter. Default is FALSE. See `write.table`.

date_field string value. Default is "Date", otherwise defined by the value of `HeaderDateDDMMYYYYhhmmMeteo` geotop keyword.

sep string value. Default is ",". See `write.table`.

level integer argument. See `get.geotop.inpts.keyword.value` for major details. Default is NULL and is ignored.

quote logical parameter. Default is TRUE. See `write.table`.

... further arguments for `write.table`.

See Also

`write.table`, `get.geotop.inpts.keyword.value`.

Examples

```r
library(geotopbricks)
data(bondone)
## Not Run - Uncomment the following line to run the example
## create.geotop.meteo.files(x=meteo)
```

declared.geotop.inpts.keywords

Collects all keywords contained in the 'getop.inpts' configuration files and their values in a data frame object.

Description

Collects all keywords contained in the 'getop.inpts' configuration files and their values in a data frame object.
Usage

declared.geotop.inpts.keywords(
 wpath,
 inpts.file = "geotop.inpts",
 comment = "!",
 exceptions = "Date",
 warn = FALSE,
 no.comment = c("!>!", "!>>!"),
 ...
)

Arguments

wpath working directory containing GEOtop files
inpts.file name of the GEOtop configuration file. Default is "geotop.inpts"
comment comment indicator character. Default is "!"
exceptions string vector. If keywords contain an element of this vector, the blank spaces in Value " " will not be removed.
warn logical argument of readLines. Default is FALSE.
no.comment string indicators read as comment ones by GEOtop but they do not indicate comments by "geotopbricks" package.
... further arguments of readLines

Value

a data frame with two columns: Keyword and Value

See Also

get.geotop.inpts.keyword.value

description

geotopbrick method bla bla bla

Usage

geotopbrick(x = NULL, ...)

Default S3 method:
geotopbrick(x, ...)

S3 method for class 'zoo'
geotopbrick(x, layer = NULL, time = NULL, crs = NULL, timerange = NULL, ...)

S3 method for class 'RasterLayer'
geotopbrick(x, layer = NULL, time = NULL, ascpath = zoo(NULL), ...)

S3 method for class 'RasterBrick'
geotopbrick(x, layer = NULL, time = NULL, ascpath = zoo(NULL), ...)

S3 method for class 'GeotopRasterBrick'
geotopbrick(
 x,
 layer = NULL,
 time = NULL,
 crs = NULL,
 timerange = NULL,
 ascpath = NULL,
 ...
)

Arguments

- **x**: a 'zoo' object returned by function `pointer.to.maps.xyz.time` or `pointer.to.maps.xy.time` or a `GeotopRasterBrick-class` object
- **...**: further arguments.
- **layer**: layer at which raster maps are imported. If is `NULL`, maps are no-zlayer distributed and `zoo` must be returned by `pointer.to.maps.xy.time`
- **time**: vector of time instants at which geotop maps are imported
- **crs**: coordinate system see `RasterBrick-class`
- **timerange**: two-elements vector containing the time range at which geotop maps are imported
- **ascpath**: `NULL` object or a "zoo" S3 object containing the names of ascii maps provided by GEOtop

Value

A `GeotopRasterBrick-class`

Description

A GeotopRasterBrick: an object to manage raster maps provided by GEOtop!!
get.geotop.inpts.keyword.value

Description

It returns the values of a keyword of "geotop.inpts" file or data frame with the suitable format.

Usage

get.geotop.inpts.keyword.value(
 keyword,
 inpts.frame = NULL,
 vector_sep = NULL,
 col_sep = ",",
 numeric = FALSE,
 format = "%d/%m/%Y %H:%M",
 date = FALSE,
 tz = "Etc/GMT-1",
 raster = FALSE,
 file_extension = ".asc",
 add_wpath = FALSE,
 wpath = NULL,
use.read.raster.from.url = TRUE,
data.frame = FALSE,
formatter = "%04d",
level = 1,
date_field = "Date",
isNA = -9999,
matlab.syntax = TRUE,
projfile = "geotop.proj",
start_date = NULL,
end_date = NULL,
ContinuousRecovery = 0,
ContinuousRecoveryFormatter = "_crec%04d",
zlayer.formatter = NULL,
z_unit = c("centimeters", "millimeters"),
geotop_z_unit = "millimeters",
add_suffix_dir = NULL,
MAXNROW = 4,
header.only = FALSE,
...)

Arguments

keyword keyword name
inpts.frame data frame returned by declared.geotop.inpts.keywords or NULL. Default is NULL.
vector_sep character value for the separator character if Keyword Value must be returned as a vector, otherwise it is NULL. Default is NULL, but if numeric or date are FALSE, vector_sep is set ",", by default.
col_sep character value for the separator character of columns. It is used if Keyword Value is returned as a data frame or zoo object or list of these objects. Default is NULL, but is set ",".
numeric logical value. If TRUE the Value has numeric type, otherwise it is a string or string vector. Default is FALSE.
format string format representing the date, see as.POSIXlt, used if date is TRUE. Default is "%d/%m/%Y %H:%M" (which is the format used in geotop.inpts keyword InitDateDDMMYYYYhhmm)
date logical value. If TRUE the Value is retured as POSIXlt date, otherwise it is a string or string vector. Default is FALSE.
tz format string representing the time zone, see as.POSIXlt, used if date is TRUE. Default is "Etc/GMT-1" (until the previous version it was "A") which meens UTC +1.
raster logical value. Default is FALSE. If TRUE function returns directly the raster map as Raster-class object built with raster method.
file_extension Extension to be added to the keyword if keyword is a file name. Default is ".asc"
add_wpath logical value. Default is FALSE. If TRUE, the wpath string is attached to the keyword string value. It is automatically set TRUE if raster is TRUE.

wpath working directory containing GEOtop files (included the inpts file). It is mandatory if raster is TRUE. See declared.geotop.inpts.keywords.

use.read.raster.from.url logical value. Default is TRUE. If TRUE the RasterLayer are read with read.raster.from.url, instead of raster (otherwise). It is recommended in case the files whose paths are contained in x are remote and are 'http' addresses. In this cases the stand-alone method raster(x) does not always work and use.read.raster.from.url is necessary.

data.frame logical value. It is an option for tabular data. If TRUE function returns directly a data frame or a list of data frames as data.frame or zoo objects imported from the keyword-related files using read.table function. In this case the argument wpath (see declared.geotop.inpts.keywords) is mandatory. Default is FALSE.

formatter string value. It is the decimal formatter contained in the file name and used in case the tabular data are referred at several points. Default is "%04d". It is used in case data.frame is TRUE.

level integer values. Numbers incating all the identification numbers of the files containing the requested data frames. Default is 1, correspondig to the decimal formatter "0001". See examples.

date_field string value. Default is "Date", otherwise defined by the value of HeaderDateDDMMYYYYhhmmMeteo geotop keyword. It is used only if the argument data.frame is TRUE. If it is NULL or NA the function return a list of generic data.frame object(s), otherwise link{zoo} object(s). See the arguments tz and format for Date formatting.

isNA numeric value indicating NA in geotop ascii files. Default is -9999.00

matlab.syntax logical value. Default is FALSE. If TRUE a vector is written in a string according to *.m file syntax. Warning: this syntax is not read by GEOtop.

projfile filename of the GEOtop projection file. Default is geotop.proj.

start_date, end_date null objects or dates in POSIXlt format between which the variables are returned. It is enabled in case that date_field is not NULL or NA and data.frame is TRUE. Default is NULL.

ContinuousRecovery integer value. Default is 0. It is used for tabular output data and is the number of times GEOtop simulation broke during its running and was re-launched with 'Continuous Recovery' option.

ContinuousRecoveryFormatter character string. Default is '_crec%04d'. It is used only for tabular output data and if ContinuousRecovery is equal or greater than 1.

zlayer.formatter decimal formatter. It is used if data.frame==TRUE and the columns refers to different soil depths. Default is NULL.

z_unit z coordinate measurement unit. GEOtop values expressed in millimeters which are converted to centimeters by default. Default is c("centimeters","millimeters").
get.geotop.inpts.keyword.value

Otherwise can be the ratio between the unit and one meter. It is used if zlayer.formatter="z%04d" or similar.

geotop_z_unit
z coordinate measurement unit used by GEOtop. Default is millimeters. It is used if zlayer.formatter="z%04d" or similar.

add_suffix_dir
character string. Add a suffix at the directory reported in the keyword value

MAXNROW
maximum number accepted for data.frame output. Default is 4. It is used in case of data.frame==TRUE. In case the number of records in the function output is less than MAXNROW, function returns neither data.frame nor zoo objects but only the keyword value.

header.only
logical value. Default is FALSE. If it is TRUE and data.frame==TRUE, only file header with variable names is returned by the function.

...
further arguments of declared.geotop.inpts.keywords

Value

the keyword value

Note

If inpts.frame is NULL, inpts.frame will be obtained by calling the function declared.geotop.inpts.keywords with ... arguments.

Examples

library(geotopbricks)

#Simulation working path

wpath <-
'https://raw.githubusercontent.com/ecor/geotopbricks_doc/master/simulations/panola13_run2xC_test3'
URL path (RAW VERSION) of
https://github.com/ecor/geotopbricks_doc/tree/master/simulations/panola13_run2xC_test3

prefix <- get.geotop.inpts.keyword.value("SoilLiqWaterPressTensorFile",wpath=wpath)

slope <- get.geotop.inpts.keyword.value("SlopeMapFile",raster=TRUE,wpath=wpath)

bedrock_depth <- get.geotop.inpts.keyword.value("BedrockDepthMapFile",raster=TRUE,wpath=wpath)

layers <- get.geotop.inpts.keyword.value("SoilLayerThicknesses",numeric=TRUE,wpath=wpath)
names(layers) <- paste("L",1:length(layers),sep="")

set van genuchten parameters to estimate water volume

theta_sat <- get.geotop.inpts.keyword.value("ThetaSat",numeric=TRUE,wpath=wpath)
theta_res <- get.geotop.inpts.keyword.value("ThetaRes",numeric=TRUE,wpath=wpath)
alphaVG <- get.geotop.inpts.keyword.value("AlphaVanGenuchten",
numeric=TRUE,wpath=wpath) # expressed in mm^-1

nVG <- get.geotop.inpts.keyword.value("NVanGenuchten",numeric=TRUE,wpath=wpath)
end set van genuchten parameters to estimate water volume

set meteo data

tz <- "Etc/GMT-1" ## See help(timezones) In particular:
Most platforms support time zones of the form Etc/GMT+n
and Etc/GMT-n (possibly also without prefix Etc/),
which assume a fixed offset from UTC (hence no DST).
Contrary to some expectations
(but consistent with names such as PST8PDT), negative offsets are times ahead of (east of) UTC,
positive offsets are times behind (west of) UTC.
start <- get.geotop.inpts.keyword.value("InitDateDDMMYYYYhhmm", date=TRUE,wpath=wpath,tz=tz)
end <- get.geotop.inpts.keyword.value("EndDateDDMMYYYYhhmm", date=TRUE,wpath=wpath,tz=tz)
nmeteo <- get.geotop.inpts.keyword.value("NumberOfMeteoStations", numeric=TRUE,wpath=wpath)
level <- 1:nmeteo

set meteo data
meteo <- get.geotop.inpts.keyword.value("MeteoFile",wpath=wpath,data.frame=TRUE, level=level,start_date=start,end_date=end,tz=tz)

end set meteo data

IMPORTING AN OUTPUT SOIL MOISTURE PROFILE:

wpath <- paste0('https://raw.githubusercontent.com/ecor/geotopbricks_doc/
' 'master/simulations/Muntatschini_pnt_1_225_B2_004')

SMC <- get.geotop.inpts.keyword.value("SoilLiqContentProfileFile", wpath=wpath,data.frame=TRUE,date_field="Date12.DDMMYYYYhhmm.", formatter="%04d")

SMCz <- get.geotop.inpts.keyword.value("SoilLiqContentProfileFile", wpath=wpath,data.frame=TRUE,date_field="Date12.DDMMYYYYhhmm.", formatter="%04d",zlayer.formatter="z%04d")
get.geotop.points

Get a \textit{sf} object for Meteorological Stations or Control Points in a GEOtop simulation

Description

Get a \textit{sf} object for Meteorological Stations or Control Points in a GEOtop simulation

Usage

\begin{verbatim}
get.geotop.points(
 prefix = c("MeteoStation", "CoordinatePoint"),
 suffixes = c("Code", "Elevation", "Source"),
 coord_suffixes = list(MeteoStation = c("CoordinateX", "CoordinateY"), CoordinatePoint = c("X", "Y")),
 wpath,
 ...,
 vector_sep = ","
)
\end{verbatim}

Arguments

\begin{itemize}
 \item prefix keyword prefix
 \item suffixes keyword suffixes
 \item coord_suffixes coordinate keyword suffixes. Default is c("PointX","PointY")
 \item wpath GEOtop simulation path
 \item vector_sep,... further arguments for \texttt{get.geotop.inpts.keyword.value}
\end{itemize}

Examples

###See simulation template: "https://github.com/ecor/geotopbricks_doc/tree/master/template/sumava"

\begin{verbatim}
wpath <- "https://raw.githubusercontent.com/ecor/geotopbricks_doc/master/template/sumava/"
out <- get.geotop.points(wpath=wpath)
out <- get.geotop.points(prefix="CoordinatePoint",suffix=c("Code","Source"),wpath=wpath)
out <- get.geotop.points(prefix="MeteoStation",suffix=c("Code","Source"),wpath=wpath)
\end{verbatim}
get.geotop.recovery.state

This function saves all spatially distributed information contained in the recovery folder into a comprehensive list object.

Description

This function saves all spatially distributed information contained in the recovery folder into a comprehensive list object.

Usage

get.geotop.recovery.state(
 recFolder,
 xx = "0000",
 formatter = "L%04d",
 extension = ".asc",
 nsoillayers = 10,
 layersFromDir = FALSE,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>recFolder</td>
<td>directory when recovery maps are set. In GEOTop it is ...</td>
</tr>
<tr>
<td>xx</td>
<td>character String. Default is "0000"</td>
</tr>
<tr>
<td>formatter</td>
<td>string character for the decimal formatter to be used. Default is "L%04d".</td>
</tr>
<tr>
<td>extension</td>
<td>file extension used for ascii recovery map files. It must contain ', ' as the first character. Default is ".asc".</td>
</tr>
<tr>
<td>nsoillayers</td>
<td>number of soil layers used in the GEOTop simulation.</td>
</tr>
<tr>
<td>layersFromDir</td>
<td>logical value. If is TRUE the number of soil/snow (vertical) layers used in the GEOTop simulation is automatically calculated and cannot be assigned through nsoillayers.</td>
</tr>
<tr>
<td>...</td>
<td>further arguments</td>
</tr>
</tbody>
</table>

Value

A list object containing all recovery raster maps.

Note

This function has been used with the built 1.225-9 of GEOTop.

Author(s)

Emanuele Cordano
getProjection

It reads the CRS metadata utilized in a GEOtop Simulation

Description

It reads the CRS metadata utilized in a GEOtop Simulation

Usage

getProjection(x, cond = TRUE, ...)

Arguments

x
name and full path of the file containing CRS information
cond
logical value. If FALSE the function returns NA. Default is TRUE.
...
 further arguments

Value

A string corresponding the projection and CRS if the argument cond is TRUE.

Examples

library(geotopbricks)

wpath <- 'https://raw.githubusercontent.com/ecor/geotopbricks_doc/master/simulations/idroclim_test1'
URL path (RAW VERSION) of
https://github.com/ecor/geotopbricks_doc/tree/master/simulations/idroclim_test1
Not run:
x <- paste(wpath,"geotop.proj",sep="/")
getvalues.brick.at.depth

Interpolates the values of a 'brick' at a certain depth and returns the map of brick values at the "depth" level

Description

Interpolates the values of a 'brick' at a certain depth and returns the map of brick values at the "depth" level.

Usage

getvalues.brick.at.depth(x, depth, layers, i0 = NULL, verify = FALSE, ...)

Arguments

x
a 'RasterBrick' or a three-dimensional array

depth
depth map, generally a 'RasterLayer' object

layers
vector of layer thickness

i0
a 'Raster' containing the number of soil layer just over the bedrock. Default is NULL and is then calculated.

verify
logical. Default is FALSE. If it is TRUE, it verifies that function is working correctly.

...
further argument

Value

a list of 'Raster' maps:

i0 a 'Raster' containing the number of soil layer just over the bedrock
val_z0 a 'Raster' containing the values of x at the i0-th layer
val_z1 a 'Raster' containing the values of x at the (i0+1)-th layer
z0 a 'Raster' containing the depth of the center of the i0-th layer
z1 a 'Raster' containing the depth of the center of the (i0+1)-th layer

Note

x and depth or i0 must cover the same spatial region.
See Also

codevertical.aggregate.brick.within.depth

Examples

library(geotopbricks)
The examples is the following R script conteined in a 'inst' directory of the package source
f <- system.file("doc/examples/example.getvalues.brick.at.depth.R",package="geotopbricks")
source(f) # Uncomment this line to run the example.
You can copy the example file using file.copy(from=f,to=....,...) See file.copy documentation

Description

KML method for a GeotopRasterBrick object

Usage

S4 method for signature 'GeotopRasterBrick'
KML(
 x,
 filename,
 crs = as.character("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"),
 ...
)

Arguments

 x the GeotopRasterBrick object
 filename mane of the KML file to produce
 crs character string containing the LatLon reference system. Default is "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" (see https://spatialreference.org/ref/epsg/4326/).
 ...

Note

 A coordinate transformation is made with projectRaster.
Examples

library(geotopbricks)
The examples is the following R script contained in a 'inst' directory of the package source
f <- system.file("doc/examples/example.KML.GeotopRasterBrick.R",package="geotopbricks")
Not run:
 source(f) # Uncomment this line to run the example.

End(Not run)
You can copy the example file using file.copy(from=f,to=....,...) See file.copy documentation

max_value

Description

 Gets the maximum (scalar) values of a GeotopRasterBrick object

Usage

 max_value(x, na.rm = TRUE, ...)

Arguments

 x a GeotopRasterBrick object.
 na.rm, ... further arguments for max.

Value

 the maximum (scalar) values of a GeotopRasterBrick object

min_value

Description

 Gets the minimum (scalar) values of a GeotopRasterBrick object

Usage

 min_value(x, na.rm = TRUE, ...)

Arguments

 x a GeotopRasterBrick object.
 na.rm, ... further arguments for min.
Value

the minimum (scalar) values of a `GeotopRasterBrick` object

Description

 Ops

Usage

```r
## S4 method for signature 'GeotopRasterBrick,GeotopRasterBrick'
Ops(e1, e2)

## S4 method for signature 'GeotopRasterBrick,numeric'
Ops(e1, e2)

## S4 method for signature 'numeric,GeotopRasterBrick'
Ops(e1, e2)
```

Arguments

- `e1, e2` the `GeotopRasterBrick` or numeric objects

Details

Ops method for a GeotopRasterBrick object

Note

If `e1` or `e2` time index is not taken into account.

Description

 plot

Usage

```r
## S4 method for signature 'GeotopRasterBrick,ANY'
plot(x, y = NULL, ...)
```
Arguements

<table>
<thead>
<tr>
<th>x</th>
<th>the GeotopRasterBrick object</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>further argument</td>
</tr>
<tr>
<td>...</td>
<td>further argument for S4 method plot for Raster object.</td>
</tr>
</tbody>
</table>

See Also

KML

Examples

```r
library(geotopbricks)
# The examples is the following R script conteined in a 'inst' directory of the package source
f <- system.file("doc/examples/example.plot.GeotopRasterBrick.R",package="geotopbricks")
# source(f) # Uncomment this line to run the example.
# You can copy the example file using file.copy(from=f,to=....,...) See file.copy documentation
```
Arguments

wpath
complete working path to *.asc maps are saved

map.prefix
string prefix name map before

suffix
z-time or time suffix plus file extension character string. Default for GEOtop application is "L%04dN%04d.asc" for xy+z+time maps or "N%04d.asc" for xy+time maps.

zoo.index
time or date index. Default is NULL, otherwise function returns a zoo object with zoo.index as index.

ntime
number of time instant. If zoo.index is not NULL, it is calculated from zoo.index length.

nlayers
number of vertical layers.

Value

A dota.frame or zoo object containing the paths to maps for each time and z layer.

Author(s)

Emanuele Cordano

read.ascii.vectorized.brick
Read a text file containing values and metadata of a z-layer brick referred to a time instant (e.g. date). The file is formatted like an ascii format like 'geotop.inpts' file.

Description

Read a text file containing values and metadata of a z-layer brick referred to a time instant (e.g. date). The file is formatted like an ascii format like 'geotop.inpts' file.

Usage

```r
read.ascii.vectorized.brick(
    file = NULL,
    comment = "!",
    crs = "",
    NAflag = -9999,
    matlab.syntax = FALSE,
    ...
)
```
read.raster.from.url

Arguments

file character. Comment indicator. Default is "!".
comment Character or object of class CRS. PROJ4 type description of a Coordinate Reference System (map projection) (optional). See brick or raster.
NAflag numeric. Default is -9999, see writeRasterxGeorge.
matlab.syntax logical value. Default is FALSE. If TRUE the file syntax is like the one of a *.m Matlab script file.
... further arguments inserted as attribute

Value

the RasterBrick-class object

See Also

date.ascii.vectorized.brick

Examples

see the examples of read.ascii.vectorized.brick

read.raster.from.url file name to write

Arguments

x character string containing the URL address
header_nrow Number of header in the ASCII grid format. Default is 6. See https://en.wikipedia.org/wiki/Esri_grid
... additional arguments

Value

a 'RasterLayer' object
Note

This function reads a local or remote text files formatted as https://en.wikipedia.org/wiki/Esri_grid and creates a 'RasterLayer' object.

See Also

raster.readLines

read.vectorized.geotop.recovery

Reads a text file like the one generated by write.vectorized.geotop.recovery

Description

#. containing values and matedata of a z-layer brick referred to a time instant (e.g. date). The file is formatted like an ascii format like 'geotop.inpts' file.

Usage

read.vectorized.geotop.recovery(
 file = file,
 comment = "!",
 matlab.syntax = TRUE,
 xx = "0000",
 formatter = "L%04d",
 extension = ".asc",
 NAflag = -9999,
 crs = "",
 ...
)

Arguments

file character. File name to write
comment character. Comment indicator. Default is "!".
matlab.syntax logical value. Default is TRUE. If TRUE the file syntax is like the one of a *.m Matlab script file.
formatter, extension, xx see get.geotop.recovery.state.
NAflag numeric. Default is -9999, see writeRasterxGEOtop.
crs Character or object of class CRS. PROJ4 type description of a Coordinate Reference System (map projection) (optional). See brick or raster.
...

Further arguments inserted as attribute
Value

A list object like `get.geotop.recovery.state`

See Also

`write.vectorized.geotop.recovery`

Examples

```r
# see the examples of read.ascii.vectorized.brick
```

replace.keyword It replaces some keyword values of geotop.inpts file with the ones of another *.inpts value

Description

It replaces some keyword values of geotop.inpts file with the ones of another *.inpts value

Usage

```r
replace.keyword(
  x,
  y = "geotop.inpts",
  file.output = NULL,
  write.file.output = TRUE,
  wpath = NULL,
  ...
)
```

Arguments

- `x` filename of the *.inpts with the "new" keyword value
- `y` filename of the *.inpts with the "old" keyword value. Default is "geotop.inpts".
- `file.output` filename where to write the comprehensive new geotop.inpts file. If it is NULL (default), the filename is assigned by `y`.
- `write.file.output` logical value. If it is TRUE, the output of the function is written in the file `file.output`.
- `wpath` working path to the GEOtop simulation folder containing the `x` and `y` files.
- `...` further arguments
This function replaces some keyword values of `y` with the ones indicated in `y`. It is useful to replace the meteo station metadata, for instance, when the meteorological station of a study cases are modified. The function returns the new `geotop.inpts` file as a vector of character strings. If `write.file.output==TRUE`, the output is written in an external file, e.g. "geotop.inpts" newly (this option is suggested).

Author(s)
Emanuele Cordano

Examples

```r
library(geotopbricks)
wpath <- system.file('template/meteo_ex',package="geotopbricks")
x <- "meteo.inpts"
zl <- replace.keyword(x,wpath=wpath,write.file.output=FALSE)
```

set.geotop.recovery.state

This function re-writes the recovery ascii raster maps in a given folder

Description
This function re-writes the recovery ascii raster maps in a given folder

Usage

```r
set.geotop.recovery.state(rec, newRecFolder, ...)
```

Arguments

- `rec` a list object returned by `get.geotop.recovery.state`
- `newRecFolder` directory where to write all recovery raster ascii maps
- `...` further arguments

Author(s)
Emanuele Cordano

See Also

`get.geotop.recovery.state`, `writeRasterxGEOtop`
vertical.aggregate.brick.within.depth

Aggregates with a mean or an addition on the vertical profile the values of a 'brick' within a certain depth and returns the vertical aggregated map

Description

Aggregates with a mean or an addition on the vertical profile the values of a 'brick' within a certain depth and returns the vertical aggregated map

Usage

vertical.aggregate.brick.within.depth(
 x,
 depth = NULL,
 layers = NULL,
 i0 = NULL,
 verify = FALSE,
 FUN = identity,
 divide.by.depth = FALSE,
 ...
)

Arguments

x a 'RasterBrick' or a three-dimensional array
depth depth map, generally a 'RasterLayer' object
layers vector of layer thickness
i0 a 'Raster' containing the number of soil layer just over the bedrock. Default is NULL and is then calculated.
verify logical. Default is FALSE. If it is TRUE, it verifies that function is working correctly.
FUN function used for aggregation. If missing, identity is the default value.
divide.by.depth logical. If TRUE the function returns the 'mean' value, otherwise a a cumulate value. Default is FALSE.
... further argument for FUN
Value

- a list of 'Raster' maps:
 - i0 a 'Raster' containing the number of soil layer just over the bedrock
 - z0 a 'Raster' containing the depth of the center of the i0-th layer
 - result a 'Raster' containing the aggregated map

Note

x and depth or i0 must cover the same spatial region.

See Also

getvalues.brick.at.depth,brick

Examples

```r
library(geotopbricks)
# The examples is the following R script conteined
# in a 'inst' directory of the package source
f <- system.file("doc/examples/example.vertical.aggregate.brick.within.depth.R", package="geotopbricks")
# source(f) # Uncomment this line to run the example.
# You can copy the example file using file.copy(from=f,to=...,...) See file.copy documentation
```
Usage

write.ascii.vectorized.brick(
 b,
 file = NULL,
 header = NULL,
 overwrite = TRUE,
 NAflag = -9999,
 matlab.syntax = FALSE,
 ...
)

Arguments

b a RasterBrick-class or GeotopRasterBrick-class object
file file name to write
header character string vector for header text lines. If missing, a default header is written. #Default is c("! header").
overwrite logical. Default is TRUE, see writeRaster.
NAflag numeric. Default is -9999, see writeRasterxGEOtop.
matlab.syntax logical value. Default is FALSE. If TRUE the file syntax is like the one of a *.m Matlab script file.
... further arguments inserted as attribute

Value

the string vector possibly written in file.

Note

Add Quote if necessary. This function is NOT maintained and will be DEPRECATED.

See Also

read.ascii.vectorized.brick

Examples

Not Run
library(geotopbricks)
library(raster)
file <- system.file("doc/examples/snowthickness",package="geotopbricks")
file <- paste(file,"SnowThickness0000L%04d.asc",sep="/"")
b <- brick.decimal.formatter(file=file,nlayers=15)
nlayers(b)
names(b)
file <- "snow.txt"
btext <- write.ascii.vectorized.brick(b,Date="1/1/2009",file="snow.txt")
The printed object
write.geotop.table

Writes an R object (data.frame or zoo) into a CSV file readable by GEOtop.

Description

Writes an R object (data.frame or zoo) into a CSV file readable by GEOtop.

Usage

write.geotop.table(
 x,
 file,
 wpath = NULL,
 tz = "Etc/GMT-1",
 date_field = "Date12.DDMMYYYYhhmm.",
 file_end = "",
 sep = ",",
 format = "%d/%m/%Y %H:%M",
 na = "-9999",
 ...
)

Arguments

x R object (data.frame or zoo) to be exported and written.
file filename
wpath working path to the GEOtop simulation. If wpath is not NULL, filename will be put in wpath.
tz time zone. Default is "Etc/GMT-1". See get.geotop.inpts.keyword.value for further details.
date_field string used for date-time field. Default is "Date12.DDMMYYYYhhmm.". See get.geotop.inpts.keyword.value for further details.
file_end suffix of the file name (file) (optional). Default is "".
sep separator character. Default is ",". See write.table for further details.
format date time format. Default is "%d/%m/%Y %H:%M". See get.geotop.inpts.keyword.value for further details.
na string for unassigned values. Default is "-9999". See write.table for further details.
... further arguments for write.table.
write.vectorized.geotop.recovery

It writes a list object returned by `get.geotop.recovery.state` as a string vector or in a text file, following `.inpts` or Matlab-like syntax.

Description

It writes a list object returned by `get.geotop.recovery.state` as a string vector or in a text file, following `.inpts` or Matlab-like syntax.

Usage

```r
write.vectorized.geotop.recovery(
  rec,
  file = NULL,
  header = NULL,
  overwrite = TRUE,
  NAflag = -9999,
  matlab.syntax = TRUE,
  ...
)
```

Arguments

- `rec` a list object returned by `get.geotop.recovery.state`
- `file` ascii text file name where to write the string vector
- `header` character string vector for header text lines. If missing, a default header is written. Default is c("! header") or the one assigned by `matlab.syntax`.
- `overwrite` logical. Default is `TRUE`, see `writeRaster`.
- `NAflag` numeric. Default is `-9999`, see `writeRasterXGEOtop`.
- `matlab.syntax` logical value. Default is `TRUE`. If `TRUE` the file syntax is like the one of a `*.m` Matlab script file.
- `...` further arguments inserted as attribute

Value

a string vector containing the `rec` variables.

Note

Add Quote if necessary

See Also

- `get.geotop.recovery.state`, `set.geotop.recovery.state`, `write.vectorized.variable.in.string`
write.vectorized.variable.in.string

Write one or more variables (scalars, vectors or Rasters) in a string each, following *.inpts or Matlab-like syntax.

Description

Write one or more variables (scalars, vectors or Rasters) in a string each, following *.inpts or Matlab-like syntax.

Usage

write.vectorized.variable.in.string(
 l,
 NAflag = -9999,
 matlab.syntax = FALSE,
 ...
)

Arguments

l a codelist object contained the variables (scalars, vectors or Rasters) which will be written in a string each.

NAflag numeric. Default is -9999, see writeRasterxGEOtop.

matlab.syntax logical value. Default is FALSE. If TRUE the file syntax is like the one of a *.m Matlab script file.

... further arguments

Value

the string vector <NAME_VARIABLE>=<VALUES_VARIABLE>.

Note

Add Quote if necessary

See Also

read.ascii.vectorized.brick
Examples

```r
a <- 1:5
l <- list(v=a,a=a)
out <- write.vectorized.variable.in.string(l,matlab.syntax=TRUE)
out
```

writeRasterxGEOtop

This function uses `writeRaster` to create .asc maps which can be read by GEOtop

Description

This function uses `writeRaster` to create .asc maps which can be read by GEOtop

Usage

```r
writeRasterxGEOtop(
  x,
  filename = NULL,
  overwrite = TRUE,
  NAflag = -9999,
  use.decimal.formatter = FALSE,
  start.from.zero = FALSE,
  keyword,
  wpath,
  suffix.ext = ".asc",
  ...
)
```

Arguments

- **x**: a Raster object, see `writeRaster`. It can be also a `RasterBrick-class` object.
- **filename**: see `writeRaster`. It is a vector of string or one string containing a decimal formatter (see `brick.decimal.formatter`) in case x is a `RasterBrick-class` object.
- **overwrite**: logical. Default is `TRUE`, see `writeRaster`.
- **NAflag**: numeric. Default is `-9999`, see `writeRaster`.
- **use.decimal.formatter**: logical value. Default is `FALSE`. If it is `TRUE` or x is a `RasterBrick-class` object with `nlayers(x)`!=`length(filename)`, filename is considered as one string containing a decimal formatter (e.g. "%04d", see `brick.decimal.formatter`). Otherwise, if filename is considered as a vector string.
zoo-class

A GeotopRasterBrick: an object to manage raster maps provided by GEOtop!!

Description

A GeotopRasterBrick: an object to manage raster maps provided by GEOtop!!

Examples

showClass("zoo")
Index

* classes
 GeotopRasterBrick-class, 17
* dataset
 bondone, 3
* methods
 Ops, 29
 meteo(bondone), 3
 min, 28
 min_value, 28
 Ops, GeotopRasterBrick,GeotopRasterBrick-method (Ops), 29
 OPS, numeric, GeotopRasterBrick-method (Ops), 29
 plot, 29
 plot, GeotopRasterBrick, ANY-method (plot), 29
 pointer.to.maps.xy.time, 5, 17
 pointer.to.maps.xy.time (pointer.to.maps.xyz.time), 30
 raster, 5, 6, 19, 20, 25, 32, 33
 rasterFromOutput2DMap, 9
 read.ascii.vectorized.brick, 31, 38, 41
 read.ascii.vectorized.brick (brickFromOutputSoil3DTensor), 7
 read.raster.from.url, 5, 6, 20, 32
 read.table, 20
 read.vectorized.geotop.recovery, 25, 33
 readLines, 16, 33
 replace.keyword, 34

KML, 27, 30
KML, GeotopRasterBrick-method (KML), 27
list, 34
max, 28
max_value, 28
min, 28
min_value, 28
Ops, 29
Ops, GeotopRasterBrick, GeotopRasterBrick-method (Ops), 29
Ops, numerict, GeotopRasterBrick-method (Ops), 29
plot, 29
plot, GeotopRasterBrick, ANY-method (plot), 29
pointer.to.maps.xy.time, 5, 17
pointer.to.maps.xy.time (pointer.to.maps.xyz.time), 30
raster, 5, 6, 19, 20, 25, 32, 33
rasterFromOutput2DMap, 9
rasterFromOutput2DMap (brickFromOutputSoil3DTensor), 7
read.ascii.vectorized.brick, 31, 38, 41
read_ascii.vectorized.brick (brickFromOutputSoil3DTensor), 7
read.raster.from.url, 5, 6, 20, 32
read.table, 20
read.vectorized.geotop.recovery, 25, 33
readLines, 16, 33
replace.keyword, 34
INDEX

set.geotop.recovery.state, 25, 35, 40
setMinMax, 12
sf, 23
sprintf, 15
system, 43

vertical.aggregate.brick.within.depth,
 5, 27, 36

write.ascii.vectorized.brick, 32, 37
write.geotop.table, 39
write.table, 15, 39
write.vectorized.geotop.recovery, 25,
 33, 34, 40
write.vectorized.variable.in.string,
 40, 41
writeLines, 13
writeRaster, 38, 40, 42, 43
writeRasterxGEOtop, 32, 33, 35, 38, 40, 41,
 42

zoo, 3, 20
zoo-class, 43