Package ‘heatex’

October 13, 2022

Type Package

Title Heat exchange calculations during physical activity.

Version 1.0

Date 2013-01-28

Author Kerry Atkins

Maintainer Kerry Atkins <atkins.kerry04@gmail.com>

Description The heatex package calculates heat storage in the body and
the components of heat exchange (conductive, convective,
radiative, and evaporative) between the body and the
environment during physical activity based on the principles of
partitional calorimetry. The program enables heat exchange
calculations for a range of environmental conditions when
wearing various clothing ensembles.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2013-02-28 16:43:34

R topics documented:

heatex-package .. 2
df ... 6
heatex .. 7

Index 12
Description

The heatex package includes functions to calculate heat exchange between the body and the environment during physical activity. The program is suitable for walking, running or cycling, and for air velocities to 4 m.s⁻¹.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>heatex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-01-28</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (version 2 or later)</td>
</tr>
</tbody>
</table>

Overview: The heatex package calculates heat storage in the body and the components of heat exchange (conductive, convective, radiative, and evaporative) between the body and the environment during physical activity based on the principles of partitional calorimetry. The program enables heat exchange calculations for a range of environmental conditions when wearing various clothing ensembles. An example dataset is provided with the heatex package to inform users about the required inputs. Users should check that the variable ‘ArAD’ has the correct ratio of the body area exposed to radiation versus the total body surface area. The ArAD ratio included in the released version of the package is 0.70 for a seated posture, the relevant ratio for a standing posture is 0.73.

The function ‘heatex’ performs the heat exchange calculations and sends output data to a dataframe named ‘results’.

Following is the list of data variables that are needed to run the heatex function in the required order of the arguments: 1. time = Total time for physical activity in minutes. 2. workrate = The work rate (power output) of the activity in watts. 3. ht = Subject height in centimetres. 4. wt = Subject body mass in kilograms (to calculate the body surface area, usual body mass). 5. bmi = Subject body mass before commencing physical activity in kilograms. 6. bmf = Subject body mass after physical activity in kilograms. 7. fluidfood = Fluid and food consumption during the physical activity. 8. urinefaeces = Urine and faeces loss during the physical activity. 9. sweat = Dripped sweat in grams. 10.tci = Initial body core temperature in degrees celsius. 11.tcf = Final body core temperature in degrees celsius. 12.tski = Initial skin temperature in degrees celsius. 13.tskf = Final skin temperature in degrees celsius. 14.vo2 = Oxygen consumption in litres per minute. 15.rer = Respiratory exchange ratio. 16.tdb = Dry bulb temperature of the environment in degrees celsius. 17.tg = Black globe temperature in degrees celsius. 18.va = Air velocity in metres per second. 19.pa = Ambient water vapour pressure in mmHg. 20.icl = Intrinsic clothing insulation in m².oC.W⁻¹. 21.tcl = Temperature of the outer body surface, including clothing temperature if relevant, in degrees celsius.

Following is a description of the formulae and outputs for the calculations.

1. Environmental Variables
1.1 Calculation of mean radiant temperature, \(T_r \) (from Goldman, 1978) \(T_r (^\circ C) = ((1+(0.222 \times (va^{0.5}))) \times (T_g - T_{db})) + T_{db} \) where \(va = \) air velocity (m.s\(^{-1}\)), \(T_g = \) black globe temperature (\(^\circ C \)) and \(T_{db} = \) dry bulb temperature (\(^\circ C \)).

1.2 Calculation of convective heat transfer coefficient, \(h_c \) (from Kerslake, 1972) \(h_c (W.m^{-2}.K^{-1}) = 8.3 \times (va^{0.6}) \) where \(va = \) air velocity (m.s\(^{-1}\)).

1.3 Calculation of radiative heat transfer coefficient, \(h_r \) (from Parsons, 1993) \(h_r (W.m^{-2}.K^{-1}) = 4.E.\sigma.A.r.A.d.((273.2 + ((Tcl + Tr)/2)))3 \) where \(E = \) emissivity of the skin surface (0.98: Gonzalez, 1995, p.299), \(\sigma = \) Stefan-Boltzmann constant (5.67 x 10\(^{-8}\) W.m\(^{-2}\).K\(^{-4}\)), \(A.r.A.d = \) ratio of the area of the body exposed to radiation versus the total body surface area (0.70 for seated postures, 0.73 for standing postures), \(Tcl = \) mean surface temperature of the body (\(^\circ C \)), and \(Tr = \) mean radiant temperature (\(^\circ C \)).

1.4 Calculation of combined heat transfer coefficient, \(h \) (from Parsons, 1993) \(h (W.m^{-2}.K^{-1}) = h_c + h_r \) where \(h_c = \) the convective heat transfer coefficient (\(W.m^{-2}.K^{-1} \)) and \(h_r = \) the convective heat transfer coefficient (\(W.m^{-2}.K^{-1} \)).

1.5 Calculation of evaporative heat transfer coefficient, \(h_e \) (from Kerslake, 1972) \(h_e (W.m^{-2}.KPa^{-1}) = 16.5 \times h_c \) where \(h_c = \) the convective heat transfer coefficient (\(W.m^{-2}.K^{-1} \)).

2. Clothing Variables

2.1 Calculation of the clothing area factor, \(fcl \) (adapted from Parsons, 1993) \(fcl = 1 + (0.31 \times (Icl/0.155)) \) where \(Icl = \) intrinsic clothing insulation (m\(^2\).oC.W\(^{-1}\)).

2.2 Calculation of effective clothing insulation, \(Icle \) (from McIntyre, 1980) \(Icle (clo units) = Icl - ((fcl-1)/(0.155 \times fcl \times h)) \) where \(Icl = \) intrinsic clothing insulation (m\(^2\).oC.W\(^{-1}\)), \(fcl = \) clothing area factor (ND), \(h = \) combined heat transfer coefficient (\(W.m^{-2}.K^{-1} \)).

2.3 Calculation of the permeation efficiency factor of clothing, \(fpcl \) (adapted from Parsons, 1993) \(fpcl = 1/(1+(0.344 \times h_c \times Icle)) \) where \(h_c = \) the convective heat transfer coefficient (\(W.m^{-2}.K^{-1} \)) and \(Icle = \) the effective clothing insulation (clo units).

2.4 Calculation of the intrinsic thermal resistance of clothing, \(R_c \) (from Holmer, 1985) \(R_c (m2.K.W^{-1}) = (Tsk - T_{db})/h_c \) where \(Tsk = \) mean skin temperature (K), \(T_{db} = \) dry bulb temperature (K) and \(h_c = \) the convective heat transfer coefficient (\(W.m^{-2}.K^{-1} \)).

2.5 Calculation of the intrinsic evaporative resistance of clothing, \(R_e \) (from Holmer, 1985) \(R_e (m2.KPa.W^{-1}) = (Ps - Pa)/h_e \) where \(Ps = \) saturated water vapor pressure at the skin surface (kPa), \(Pa = \) the partial water vapor pressure (kPa) and \(h_e = \) the convective heat transfer coefficient (\(W.m^{-2}.KPa^{-1} \)).

3. Physiological Variables

3.1 Calculation of body surface area, \(AD \) \((m^2) = 0.00718 \times wt^{0.425} \times H^{0.725} \) where \(wt = \) body mass (kg) and \(H = \) height (cm).

3.2 Calculation of mean body temperature, \(T_b \) (from Kerslake, 1972) \(T_b (^\circ C) = (0.33 \times Tsk + 0.67 \times Tc) \) where \(Tsk = \) skin temperature (\(^\circ C \)) and \(Tc = \) body core temperature (\(^\circ C \)).

3.3 Calculation of saturated water vapor pressure at the skin surface, \(Ps \) (from Fanger, 1970) \(Ps (mmHg) = 1.92 \times Tsk -25.3 \) (for 27\(^{\circ} C < Tsk < 37 \(^{\circ} C \)).\) where \(Tsk = \) skin temperature (\(^\circ C \)).

4. Partitional Calorimetry Equations

4.1 Calculation of the energy equivalent of oxygen, \(EE \) (modified from Parsons, 1993) \(EE (J.L.O2^{-1}) = (0.23 \times RER + 0.77) \times 21166 \) where \(RER = \) respiratory exchange ratio (ND), 21166 is the energy equivalent of oxygen (J.L.O2^{-1}).
4.2 Calculation of metabolic free energy production, \(M \) (modified from Parsons, 1993)
\[
M (W.m^{-2}) = \frac{((EE x VO2 x t)/(t x 60))/AD}{AD} \]
where \(EE = \) energy equivalent (J.L O2-1), \(VO2 = \) oxygen consumption (L.min-1), \(t = \) exercise time (min) and \(AD = \) body surface area (m2).

4.3 Calculation of mechanical efficiency, \(n \) (from Parsons, 1993)
\[
n = \frac{W}{M} \]
where \(W = \) work rate (W.m-2) and \(M = \) metabolic free energy production (W.m-2).

4.4 Calculation of internal heat production, \(H \) (from McIntyre, 1980)
\[
H (W.m^{-2}) = (M x (1- n)) x 1/AD \]
where \(M = \) metabolic free production (W.m-2), \(n = \) mechanical efficiency and \(AD = \) the body surface area (m2).

4.5 Calculation of body heat storage, \(S \)
\[
S (W.m^{-2}) = \frac{(3474 x wt x (Tb final - Tb initial))/t}{AD} \]
where \(3474 = \) average specific heat of body tissue (J.kg-1.oC-1), \(wt = \) body mass (kg), \(Tb = \) mean body temperature (°C), \(t = \) exercise time (s) and \(AD = \) body surface area (m2).

4.6 Calculation of heat transfer via conduction, \(K \)
\[
K (W.m^{-2}) = AD x ((Tsk - Tcl)/Rc) \]
where \(AD = \) body surface area (m2), \(Tsk = \) mean skin temperature (K), \(Tcl = \) mean fabric temperature (K), and \(Rc = \) intrinsic thermal resistance of clothing (m2.K.W-1).

4.7 Calculation of heat transfer via radiation, \(R \) (adapted from McIntyre, 1980)
\[
R (W.m^{-2}) = E.sigma.fcl.feff.(Ts4 - Tr4) \]
where \(E = \) emittance from the outer surface of a clothed body (0.97), \(sigma = \) Stefan-Boltzmann constant (5.67 x 10^{-8} W.m^{-2}.K^{-4}), \(fcl = \) clothing area factor (ND), \(feff = \) effective radiation area of a clothed body (0.71), and \(Ts = \) surface temperature of the body (°C) and \(Tr = \) mean radiant temperature (°C).

4.8 Calculation of heat transfer via convection, \(C \) (from Fanger, 1970)
\[
C (W.m^{-2}) = (AD x fcl x hc x (Ts - Tdb))/ AD \]
where \(AD = \) body surface area (m2), \(fcl = \) clothing area factor (ND), \(hc = \) convective heat transfer coefficient (W.m^{-2}.K^{-1}), \(Ts = \) surface temperature of the body (°C) and \(Tdb = \) dry bulb temperature (°C).

4.9 Calculation of required evaporative heat loss, \(Ereq \) (from Gonzalez, 1995)
\[
Ereq (W.m^{-2}) = H - K - R - C - S \]
where \(H = \) internal heat production (W.m-2), \(K = \) heat exchange via conduction (W.m-2), \(R = \) heat exchange via radiation (W.m-2), \(C = \) heat exchange via convection (W.m-2), and \(S = \) body heat storage (W.m-2).

4.10 Calculation of the maximal evaporative capacity of the environment, \(Emax \) (from McIntyre, 1980)
\[
Emax (W.m^{-2}) = fpcl x he x (Ps - Pa) \]
where \(fpcl = \) permeation efficiency factor of clothing, \(he = \) evaporative heat transfer coefficient (W.m^{-2}.kPa^{-1}), \(Ps = \) partial water vapor pressure at the skin surface (kPa), and \(Pa = \) partial water vapor pressure of ambient air (kPa).

4.11 Calculation of skin wettedness, \(w \)
\[
w = \frac{Ereq}{Emax} \]
where \(Ereq = \) required evaporative heat loss (W.m-2) and \(Emax = \) maximal evaporative capacity of the environment (W.m-2).

4.12 Calculation of evaporative heat transfer via skin diffusion, \(Ed \) (modified from Fanger, 1970)
\[
Ed (W.m^{-2}) = (I.m.(Ps - Pa)) \]
where \(I = \) latent heat of evaporation of sweat (2430 J.g^{-1}), \(m = \) permeance coefficient of the skin (1.694 x 10^{-4} g.s^{-1}.m^{-2}.mmHg^{-1}), \(Ps = \) partial water vapor pressure at the skin surface (mmHg) and \(Pa = \) partial water vapor pressure in ambient air (mmHg).

4.13 Calculation of heat transfer by sweat evaporation from the skin surface, \(Esw \)
\[
Esw (W.m^{-2}) = (((wtinitial - wtfinal)-(fluid/food intake+urine/faeces loss)-((0.019 x VO2 x (44-Pa)) x t))/2430)/(t x 60) x AD) \]
where \(wt = \) body mass (g), fluid/food intake and urine/faeces loss are in grams, the expression \(0.019 x VO2 x (44-Pa) \) accounts for respiratory weight loss in g.min^{-1} (Mitchell et al., 1972), \(VO2 = \) oxygen uptake in L.min^{-1}, \(t = \) observation time (min), and \(AD = \) body surface area (m2).

4.14 Calculation of heat transfer via evaporation from the skin surface, \(Esk \)
\[
Esk (W.m^{-2}) = Ed + Esw \]
where \(Ed = \) heat transfer by skin diffusion (W.m-2) and \(Esw = \) heat transfer from sweat evaporation.
from the skin surface (W.m\(^{-2}\)).

4.15 Calculation of heat transfer via the respiratory tract, \(E_{res+ Cres}\) (from McIntyre, 1980)

\[
E_{res+ Cres} = (0.0014 \times M \times (T_{ex}-T_{db}))+(0.0017 \times M \times (58.7-Pa))
\]

where \(M\) = metabolic heat production (W.m\(^{-2}\)), \(T_{ex}\) = expired air temperature (assumed to be 34°C if \(T_{ex}\) is not measured directly), \(T_{db}\) = dry bulb temperature (°C), and \(Pa\) = partial water vapor pressure of ambient air (mmHg).

Note

The heatex function uses the following constants. The user should revise these as needed.

The latent heat of evaporation of sweat (variable 'l') is 2430 J.g\(^{-1}\). The permeance coefficient of the skin (variable 'm.coef') is 1.694 x 10\(^{-4}\) g.s\(^{-1}\).m\(^{-2}\).mmHg\(^{-1}\). Stefan-Boltzmann constant (variable 'sigma') is 5.67 x 10\(^{-8}\) W.m\(^{-2}\).K\(^{-4}\). Emittance from the outer surface of a clothed body (variable 'E') is 0.97. Effective radiation area of a clothed body (variable 'feff') is 0.71.

The following variables should be changed in the function to be specific to the test conditions.

The ratio of the body area exposed to radiation versus the total body surface area (variable 'ArAd') should be 0.70 for a seated posture and 0.73 for a standing posture. ArAD is set to 0.70 in the released heatex package.

If the test subject is clothed, the final skin temperature variable ('tskf') should be changed to the temperature of the clothing ('tcl') in the calculation of the heat transfer via radiation (r). Similarly, the 'tskf' variable in the calculation of the heat transfer via convection should be changed to the 'tcl_K' variable.

Author(s)

Kerry Atkins

Maintainer: Kerry Atkins (atkins.kerry04@gmail.com)

References

Examples

The following example demonstrates the use of the heatex function with the supplied example data:

data(df)
example <- heatex(df)
view results
example

df

Example data for heat exchange (heatex) package

Description

This dataset includes the required input data to perform the heat exchange calculations used in the heatex package.

Usage

data(df)

Format

A data frame with 2 observations on the following 21 variables.

time a numeric vector
workrate a numeric vector
ht a numeric vector
wt a numeric vector
bmi a numeric vector
bmf a numeric vector
fluidfood a numeric vector
urinefaeces a numeric vector
sweat a numeric vector
tci a numeric vector
tcf a numeric vector
tsk1 a numeric vector
tskf a numeric vector
vo2 a numeric vector
rer a numeric vector
tdb a numeric vector
tg a numeric vector
va a numeric vector
pa a numeric vector
icl a numeric vector
tcl a numeric vector
Details

The dataset contains example physiological, environmental and clothing data required for the heatex function.

There are 21 variables required for the heatex function as follows: 1. time = Total time for physical activity in minutes. 2. workrate = The work rate (power output) of the activity in watts. 3. ht = Subject height in centimetres. 4. wt = Subject body mass in kilograms (to calculate the body surface area, usual body mass). 5. bmi = Subject body mass before commencing physical activity in kilograms. 6. bmf = Subject body mass after physical activity in kilograms. 7. fluidfood = Fluid and food consumption during the physical activity. 8. urinefaeces = Urine and faeces loss during the physical activity. 9. sweat = Dripped sweat in grams. 10.tci = Initial body core temperature in degrees celsius. 11.tcf = Final body core temperature in degrees celsius. 12.tski = Initial skin temperature in degrees celsius. 13.tskf = Final skin temperature in degrees celsius. 14.vo2 = Oxygen consumption in litres per minute. 15.rer = Respiratory exchange ratio. 16.tdb = Dry bulb temperature of the environment in degrees celsius. 17.tg = Black globe temperature in degrees celsius. 18.va = Air velocity in metres per second. 19.pa = Ambient water vapour pressure in mmHg. 20.icl = Intrinsic clothing insulation in m2.oC.W-1. 21.tcl = Temperature of the outer body surface, including clothing temperature if relevant, in degrees celsius.

Source

The dataset includes example data based on research data collected by the author of the heatex package.

References

Examples

The following example demonstrates the use of the heatex function with the supplied example data:

data(df)
exemple<heatex(df) #view results example

Description

The heatex function calculates heat storage in the body and the components of heat exchange (conductive, convective, radiative and evaporative) between the body and the environment during physical activity based on the principles of partitional calorimetry. The function is suitable for walking, running or cycling, and for air velocities up to 4 m.s-1.
Usage

heatex(df)

Arguments

df Data frame with example data.

Details

Following is a description of the formulae and their sources which are used for the calculations performed by the heatex function.

1. Environmental Variables

1.1 Calculation of mean radiant temperature, \(T_r \) (from Goldman, 1978)
\[
T_r (\circ C) = ((1+(0.222 \times (v_a^{0.5})) \times (T_g - T_{db})) + T_{db}
\]
where \(v_a = \) air velocity (m.s\(^{-1}\)), \(T_g = \) black globe temperature (\(\circ C \)) and \(T_{db} = \) dry bulb temperature (\(\circ C \)).

1.2 Calculation of convective heat transfer coefficient, \(h_c \) (from Kerslake, 1972)
\[
h_c (W.m^{-2}.K^{-1}) = 8.3 \times (v_a^{0.6})
\]
where \(v_a = \) air velocity (m.s\(^{-1}\)).

1.3 Calculation of radiative heat transfer coefficient, \(h_r \) (from Parsons, 1993)
\[
h_r (W.m^{-2}.K^{-1}) = 4.E .\sigma . A r A d ((273.2 + ((T_c + T_r)/2))3)
\]
where \(E = \) emissivity of the skin surface (0.98; Gonzalez, 1995, p.299), \(\sigma = \) Stefan-Boltzmann constant (5.67 x 10\(^{-8}\) W.m\(^{-2}\).K\(^{-4}\)), \(A r A d = \) ratio of the area of the body exposed to radiation versus the total body surface area (0.70 for seated postures, 0.73 for standing postures), \(T_c = \) mean surface temperature of the body (\(\circ C \)), and \(T_r = \) mean radiant temperature (\(\circ C \)).

1.4 Calculation of combined heat transfer coefficient, \(h \) (from Parsons, 1993)
\[
h (W.m^{-2}.K^{-1}) = h_c + h_r
\]
where \(h_c = \) the convective heat transfer coefficient (W.m\(^{-2}\).K\(^{-1}\)) and \(h_r = \) the convective heat transfer coefficient (W.m\(^{-2}\).K\(^{-1}\)).

1.5 Calculation of evaporative heat transfer coefficient, \(h_e \) (from Kerslake, 1972)
\[
h_e (W.m^{-2}.KPa^{-1}) = 16.5 \times h_c
\]
where \(h_c = \) the convective heat transfer coefficient (W.m\(^{-2}\).K\(^{-1}\)).

2. Clothing Variables

2.1 Calculation of the clothing area factor, \(f_{cl} \) (adapted from Parsons, 1993)
\[
f_{cl} = 1 + (0.31 \times (I_{cl}/0.155))
\]
where \(I_{cl} = \) intrinsic clothing insulation (m2.oC.W\(^{-1}\)).

2.2 Calculation of effective clothing insulation, \(I_{cle} \) (from McIntyre, 1980)
\[
I_{cle} (clo units) = I_{cl} - ((f_{cl}-1)/(0.155 \times f_{cl} \times h))
\]
where \(I_{cl} = \) intrinsic clothing insulation (m2.oC.W\(^{-1}\)), \(f_{cl} = \) clothing area factor (ND), \(h = \) combined heat transfer coefficient (W.m\(^{-2}\).K\(^{-1}\)).

2.3 Calculation of the permeation efficiency factor of clothing, \(f_{pcl} \) (adapted from Parsons, 1993)
\[
f_{pcl} = 1/(1+(0.344 \times h_c \times I_{cle}))
\]
where \(h_c = \) the convective heat transfer coefficient (W.m\(^{-2}\).K\(^{-1}\)) and \(I_{cle} = \) the effective clothing insulation (clo units).

2.4 Calculation of the intrinsic thermal resistance of clothing, \(R_{c} \) (from Holmer, 1985)
\[
R_{c} (m2.K.W^{-1}) = (T_{sk} - T_{db})/h_c
\]
where \(T_{sk} = \) mean skin temperature (K), \(T_{db} = \) dry bulb temperature (K) and \(h_c = \) the convective heat transfer coefficient (W.m\(^{-2}\).K\(^{-1}\)).

2.5 Calculation of the intrinsic evaporative resistance of clothing, \(R_{e} \) (from Holmer, 1985)
\[
R_{e} (m2.kPa.W^{-1}) = (P_s - P_a)/h_e
\]
where \(P_s = \) saturated water vapor pressure at the skin surface (kPa), \(P_a = \) the partial water vapor pressure (kPa) and \(h_e = \) the evaporative heat transfer coefficient (W.m\(^{-2}\).KPa\(^{-1}\)).
3. Physiological Variables

3.1 Calculation of body surface area, AD (m²) = 0.00718 x wt0.425 x H0.725 where wt = body mass (kg) and H = height (cm).

3.2 Calculation of mean body temperature, Tb (from Kerslake, 1972) Tb (°C) = (0.33 x Tsk + 0.67 x Tc) where Tsk = skin temperature (°C) and Tc = body core temperature (°C).

3.3 Calculation of saturated water vapor pressure at the skin surface, Ps (from Fanger, 1970) Ps (mmHg) = 1.92 x Tsk -25.3 (for 27°C < Tsk < 37°C). where Tsk = skin temperature (°C).

4. Partitional Calorimetry Equations

4.1 Calculation of the energy equivalent of oxygen, EE (modified from Parsons, 1993) EE (J/L O2) = (0.23 x RER + 0.77) x 21 166 where RER = respiratory exchange ratio (ND), 21 166 is the energy equivalent of oxygen (J/L O2).

4.2 Calculation of metabolic free energy production, M (modified from Parsons, 1993) M (W.m-2) = (((EE x VO2 x t)/(t x 60))/AD) where EE = energy equivalent (J/L O2), VO2 = oxygen consumption (L.min-1), t = exercise time (min) and AD = body surface area (m²).

4.3 Calculation of mechanical efficiency, n (from Parsons, 1993) n = W/M where W = work rate (W.m-2) and M = metabolic free energy production (W.m-2).

4.4 Calculation of internal heat production, H (from McIntyre, 1980) H (W.m-2) = (M x (1 - n)) x 1/AD where M = metabolic free production (W.m-2), n = mechanical efficiency and AD is the body surface area (m²).

4.5 Calculation of body heat storage, SS (W.m-2) = ((3474 x wt x (Tb final - Tb initial))/t)/AD where 3474= average specific heat of body tissue (J.kg-1.oC-1), wt= body mass (kg), Tb = mean body temperature (°C), t = exercise time (s) and AD = body surface area (m²).

4.6 Calculation of heat transfer via conduction, K (W.m-2) = AD x ((Tsk - Tcl)/Rc) where AD = body surface area (m²), Tsk = mean skin temperature (K), Tcl = mean fabric temperature (K), and Rc = intrinsic thermal resistance of clothing (m².K.W-1).

4.7 Calculation of heat transfer via radiation, R (adapted from McIntyre, 1980) R (W.m-2) = E.sigma.fcl.feфф.(Ts4 - Tr4) where E = emittance from the outer surface of a clothed body (0.97), sigma = Stefan-Boltzmann constant (5.67 x 10^-8 W.m-2.K-4), fcl = clothing area factor (ND), feфф = effective radiation area of a clothed body (0.71), and Ts = surface temperature of the body (°C) and Tr = mean radiant temperature (°C).

4.8 Calculation of heat transfer via convection, C (from Fanger, 1970) C (W.m-2) = (AD x fcl x hc x (Ts - Tdb))/ AD where AD = body surface area (m²), fcl = clothing area factor (ND), hc = convective heat transfer coefficient (W.m-2.K-1), Ts = surface temperature of the body (°C) and Tdb = dry bulb temperature (°C).

4.9 Calculation of required evaporative heat loss, Ereq (from Gonzalez, 1995) Ereq (W.m-2) = H - K - R - C - S where H = internal heat production (W.m-2), K = heat exchange via conduction (W.m-2), R = heat exchange via radiation (W.m-2), C = heat exchange via convection (W.m-2), and S = body heat storage (W.m-2).

4.10 Calculation of the maximal evaporative capacity of the environment, Emax (from McIntyre, 1980) Emax (W.m-2) = fpcl x he x (Ps - Pa) where fpcl = permeation efficiency factor of clothing, he = evaporative heat transfer coefficient (W.m-2.kPa-1), Ps = partial water vapor pressure at the skin surface (kPa), and Pa = partial water vapor pressure of ambient air (kPa).

4.11 Calculation of skin wettedness, w = Ereq/ Emax where Ereq = required evaporative heat loss (W.m-2) and Emax= maximal evaporative capacity of the environment (W.m-2).
4.12 Calculation of evaporative heat transfer via skin diffusion, \(Ed \) (modified from Fanger, 1970) \(Ed = \frac{1}{m} (Ps - Pa) \) where \(l \) = latent heat of evaporation of sweat (2430 J.g\(^{-1}\)), \(m \) = permeance coefficient of the skin (1.694 x 10\(^{-4}\) g.s\(^{-1}\).m\(^{-2}\).mmHg\(^{-1}\)), \(Ps \) = partial water vapor pressure at the skin surface (mmHg) and \(Pa \) = partial water vapor pressure in ambient air (mmHg).

4.13 Calculation of heat transfer by sweat evaporation from the skin surface, \(E_{sw} \) \(E_{sw} = \frac{\left(\frac{wt_{initial} - wt_{final}}{fluid/food intake + urine/faeces loss} - \left(0.019 \times VO_{2} \times (44 - Pa)\right) \times t\right)}{2430} \times \frac{2}{t \times 60 \times AD} \) where \(wt \) = body mass (g), fluid/food intake and urine/faeces loss are in grams, the expression \(0.019 \times VO_{2} \times (44 - Pa) \) accounts for respiratory weight loss in g.min\(^{-1}\) (Mitchell et al., 1972), \(VO_{2} \) = oxygen uptake in L.min\(^{-1}\), \(t \) = observation time (min), and \(AD \) = body surface area (m\(^2\)).

4.14 Calculation of heat transfer via evaporation from the skin surface, \(E_{sk} \) \(E_{sk} = Ed + E_{sw} \) where \(Ed \) = heat transfer by skin diffusion (W.m\(^{-2}\)) and \(E_{sw} \) = heat transfer from sweat evaporation from the skin surface (W.m\(^{-2}\)).

4.15 Calculation of heat transfer via the respiratory tract, \(E_{res} + C_{res} \) (from McIntyre, 1980) \(E_{res} + C_{res} = \frac{(0.0014 \times M \times (Tex - Tdb)) + (0.0017 \times M \times (58.7 - Pa))}{W.m^{-2}} \) where \(M \) = metabolic heat production (W.m\(^{-2}\)), \(Tex \) = expired air temperature (assumed to be 34\(^\circ\)C if \(Tex \) is not measured directly), \(Tdb \) = dry bulb temperature (\(^\circ\)C), and \(Pa \) = partial water vapor pressure of ambient air (mmHg).

Value

The heat exchange calculations derived by the heatex function are output to a dataframe named 'results'. The list of items returned in the 'results' dataframe is as follows.

- **tr**: Mean radiant temperature.
- **hc**: Convective heat transfer coefficient.
- **h**: Combined heat transfer coefficient.
- **he**: Evaporative heat transfer coefficient.
- **pa_kpa**: Ambient water vapour pressure in kPa.
- **fc1**: Clothing area factor.
- **icle**: Effective clothing insulation.
- **fpc1**: Permeation efficiency factor of clothing.
- **rc**: Intrinsic thermal resistance of clothing.
- **re**: Intrinsic evaporative resistance of clothing.
- **ad**: Body surface area.
- **tbi**: Initial mean body temperature.
- **tbf**: Final mean body temperature.
- **ps**: Saturated water vapor pressure at the skin surface in mmHg.
- **ps_kpa**: Saturated water vapor pressure at the skin surface in kPa.
- **m**: Metabolic free energy production.
- **n**: Mechanical efficiency.
- **hi**: Internal heat production.
- **s**: Body heat storage.
Heat transfer via conduction.
Heat transfer via radiation.
Heat transfer via convection.
Required evaporative heat loss.
Maximal evaporative capacity of the environment.
Skin wettedness.
Evaporative heat transfer via skin diffusion.
Heat transfer by sweat evaporation from the skin surface.
Heat transfer via evaporation from the skin surface.

Author(s)
Kerry Atkins, email: atkins.kerry04@gmail.com

References
Index

* Heat exchange, heat transfer
 heatex-package, 2

* heatex data
 df, 6

df, 6

heatex, 7
heatex-package, 2