Package ‘iterLap’

October 13, 2022

Type Package
Title Approximate Probability Densities by Iterated Laplace Approximations
Version 1.1-3
Depends quadprog, randtoolbox, parallel, R (>= 2.15)
Date 2017-08-05
Author Bjoern Bornkamp
Maintainer Bjoern Bornkamp <bbnkm@gmail.com>
Description The iterLap (iterated Laplace approximation) algorithm approximates a general (possibly non-normalized) probability density on \(\mathbb{R}^p \), by repeated Laplace approximations to the difference between current approximation and true density (on log scale). The final approximation is a mixture of multivariate normal distributions and might be used for example as a proposal distribution for importance sampling (eg in Bayesian applications). The algorithm can be seen as a computational generalization of the Laplace approximation suitable for skew or multimodal densities.
License GPL
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-08-05 19:28:28 UTC

R topics documented:

- iterLap-package .. 2
- GRApprox .. 3
- Importance Sampling and independence Metropolis Hastings sampling 5
- iterLap ... 6
- resample ... 8

Index 9
iterLap-package

iterLap-package

iterLap package information

Description

Implementation of iterLap

Details

Package: iterLap
Type: Package
Version: 1.1-2
Date: 2012-05-22
License: GPL
LazyLoad: yes

This package implements the multiple mode Laplace approximation by Gelman and Rubin (via function GRApprox) and the iterated Laplace approximation (via the function iterLap). Both functions return objects of class mixDist, which contain the fitted mode vectors and covariance matrices. Print and summary methods exist to display the contents of a mixDist object in human-readable form. Function IS performs importance sampling, using a mixDist object as input parameter.

Author(s)

Bjoern Bornkamp
Maintainer: Bjoern Bornkamp <bbnkmp@gmail.com>

References

Examples

```r
## banana example
banana <- function(pars, b, sigma12){
    dim <- 10
    cc <- c(1/sqrt(sigma12), rep(1, dim-1))
    return(-0.5*sum((y*cc)^2))
}
start <- rbind(rep(0,10),rep(-1.5,10),rep(1.5,10))
## multiple mode Laplace approximation
gr <- GRApprox(banana, start, b = 0.03, sigma12 = 100)
## print mixDist object
```
Summary Method

```r
summary(gr)
```

Importance Sampling Using the Obtained MixDist Object

Using a mixture of t distributions with 10 degrees of freedom

```r
issamp <- IS(gr, nSim=1000, df = 10, post=banana, b = 0.03,
           sigma12 = 100)
```

Effective Sample Size

```r
issamp$ESS
```

Now Use Iterated Laplace Approximation (Using gr MixDist Object from Above as Starting Approximation)

```r
iL <- iterLap(banana, GRobj = gr, b = 0.03, sigma12 = 100)
ISObj <- IS(iL, nSim=10000, df = 100, post=banana, b = 0.03,
           sigma12 = 100)
```

Residual Resampling to Obtain Unweighted Sample

```r
sims <- resample(1000, ISObj)
plot(sims[,1], sims[,2], xlim=c(-40,40), ylim = c(-40,20))
```

GRApprox

Gelman-Rubin Mode Approximation

Description

Performs the multiple mode approximation of Gelman-Rubin (applies a Laplace approximation to each mode). The weights are determined corresponding to the height of each mode.

Usage

```r
GRApprox(post, start, grad, method = c("nlminb", "nlm", "Nelder-Mead", "BFGS"),
          control = list(), ...)
```

Arguments

- **post**
 - log-posterior density.
- **start**
 - vector of starting values if dimension=1 otherwise matrix of starting values with the starting values in the rows
- **grad**
 - gradient of log-posterior
- **method**
 - Which optimizer to use
- **control**
 - Control list for the chosen optimizer
- **...**
 - Additional arguments for log-posterior density specified in post
Value

Produces an object of class mixDist. That a list mit entries
weights Vector of weights for individual components
means Matrix of component medians of components
sigmas List containing scaling matrices
eigenHess List containing eigen decompositions of scaling matrices
dets Vector of determinants of scaling matrices
sigmainv List containing inverse scaling matrices

Author(s)

Bjoern Bornkamp

References

See Also

iterLap

Examples

```r
## log-density for banana example
banana <- function(pars, b, sigma12){
  dim <- 10
  cc <- c(1/sqrt(sigma12), rep(1, dim-1))
  return(-0.5*sum((y*cc)^2))
}

start <- rbind(rep(0,10),rep(-1.5,10),rep(1.5,10))
## multiple mode Laplace approximation
aa <- GRApprox(banana, start, b = 0.03, sigma12 = 100)
## print mixDist object
aa
## summary method
summary(aa)
## importance sampling using the obtained mixDist object
## using a mixture of t distributions with 10 degrees of freedom
dd <- IS(aa, nSim=1000, df = 10, post=banana, b = 0.03, sigma12 = 100)
## effective sample size
dd$ESS
```
Importance Sampling and independence Metropolis Hastings sampling

Monte Carlo sampling using the iterated Laplace approximation.

Description

Use iterated Laplace approximation as a proposal for importance sampling or the independence Metropolis Hastings algorithm.

Usage

IS(obj, nSim, df = 4, post, vectorized = FALSE, cores = 1, ...)

IMH(obj, nSim, df = 4, post, vectorized = FALSE, cores = 1, ...)

Arguments

obj an object of class "mixDist"
nSim number of simulations
df degrees of freedom of the mixture of t distributions proposal
post log-posterior density
vectorized Logical determining, whether post is vectorized
cores number of cores you want to use to evaluate the target density (uses the mclapply function from the parallel package). For Windows machines, a value > 1 will have no effect, see mclapply help for details.
... additional arguments passed to post.

Value

A list with entries:
samp: Matrix containing sampled values
w: Vector of weights for values in samp
normconst: normalization constant estimated based on importance sampling
ESS: Effective sample size (for IS)
accept: Acceptance rate (for IMH)

Author(s)

Bjoern Bornkamp

Examples

see function iterLap for an example on how to use IS and IMH
iterLap

Iterated Laplace Approximation

Description

Iterated Laplace Approximation

Usage

iterLap(post, ..., GRobj = NULL, vectorized = FALSE, startVals = NULL,
method = c("nlminb", "nlm", "Nelder-Mead", "BFGS"), control = NULL,
nlcontrol = list())

Arguments

- **post**
 - log-posterior density

- **...**
 - additional arguments to log-posterior density

- **GRobj**
 - object of class mixDist, for example resulting from a call to GRApprox

- **vectorized**
 - Logical determining, whether post is vectorized

- **startVals**
 - Starting values for GRApprox, when GRobj is not specified. Vector of starting values if dimension=1 otherwise matrix of starting values with the starting values in the rows

- **method**
 - Type of optimizer to be used.

- **control**
 - List with entries:
 - gridSize
 - delta
 - maxDim
 - eps
 - info

- **nlcontrol**
 - Control list for the used optimizer.

Value

Produces an object of class mixDist: A list with entries

- **weights**
 - Vector of weights for individual components

- **means**
 - Matrix of component medians of components

- **sigmas**
 - List containing scaling matrices

- **eigenHess**
 - List containing eigen decompositions of scaling matrices

- **dets**
 - Vector of determinants of scaling matrix

- **sigmainv**
 - List containing inverse scaling matrices
Authors

Bjoern Bornkamp

References

Examples

```r
#### banana example
banana <- function(pars, b, sigma12){
  dim <- 10
  cc <- c(1/sqrt(sigma12), rep(1, dim-1))
  return(-0.5*sum((y*cc)^2))
}

###############################################################
## first perform multi mode Laplace approximation
start <- rbind(rep(0,10),rep(-1.5,10),rep(1.5,10))
grObj <- GRApprox(banana, start, b = 0.03, sigma12 = 100)
## print mixDist object
grObj
## summary method
summary(grObj)
## importance sampling using the obtained mixDist object
## using a mixture of t distributions with 10 degrees of freedom
isObj <- IS(grObj, nSim=1000, df = 10, post=banana, b = 0.03, sigma12 = 100)
## effective sample size
isObj$ESS
## independence Metropolis Hastings algorithm
imObj <- IMH(grObj, nSim=1000, df = 10, post=banana, b = 0.03, sigma12 = 100)
## acceptance rate
imObj$accept

###############################################################
## now use iterated Laplace approximation
## and use Laplace approximation above as starting point
iL <- iterLap(banana, GRobj = grObj, b = 0.03, sigma12 = 100)
isObj2 <- IS(iL, nSim=10000, df = 100, post=banana, b = 0.03, sigma12 = 100)
## residual resampling to obtain unweighted sample
samples <- resample(1000, isObj2)
## plot samples in the first two dimensions
plot(samples[,1], samples[,2], xlim=c(-40,40), ylim = c(-40,20))
## independence Metropolis algorithm
imObj2 <- IMH(iL, nSim=1000, df = 10, post=banana, b = 0.03, sigma12 = 100)
imObj2$accept
```
Resample

Residual resampling

Description

Perform residual resampling to the result of importance sampling

Usage

```r
resample(n, obj)
```

Arguments

- `n` Number of resamples to draw
- `obj` An object of class `IS`, as produced by the `IS` function

Value

Matrix with resampled values

Author(s)

Bjoern Bornkamp

Examples

```r
## see function iterLap for an example on how to use resample
```
Index

* misc
 GRAprox, 3
 Importance Sampling and independence Metropolis Hastings sampling, 5
 iterLap, 6
 resample, 8
* package
 iterLap-package, 2

GRAprox, 3

IMH (Importance Sampling and independence Metropolis Hastings sampling), 5
Importance Sampling and independence Metropolis Hastings sampling, 5
IS (Importance Sampling and independence Metropolis Hastings sampling), 5
iterLap, 4, 6
iterLap-package, 2

resample, 8