Package ‘itsmr’

October 13, 2022

Type Package
Title Time Series Analysis Using the Innovations Algorithm
Version 1.10
Date 2022-07-27
Author George Weigt
Maintainer George Weigt <g808391@icloud.com>
Description Provides functions for modeling and forecasting time series data. Forecasting is based on the innovations algorithm. A description of the innovations algorithm can be found in the textbook "Introduction to Time Series and Forecasting" by Peter J. Brockwell and Richard A. Davis. <https://link.springer.com/book/10.1007/b97391>.
License FreeBSD
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-06 06:10:02 UTC

R topics documented:

itsmr-package ... 2
aacvf ... 3
acvf .. 4
airpass ... 5
ar.inf ... 5
arar .. 6
arma .. 7
autofit ... 8
burg ... 9
check ... 10
deaths ... 10
Description

Provides functions for modeling and forecasting time series data. Forecasting is based on the innovations algorithm. A description of the innovations algorithm can be found in the textbook *Introduction to Time Series and Forecasting* by Peter J. Brockwell and Richard A. Davis.

Details

Package: itsmr
Type: Package
Version: 1.10
Date: 2022-07-27
License: FreeBSD
LazyLoad: yes
URL: https://georgeweigt.github.io/itsmr-refman.pdf
Author(s)
George Weigt
Maintainer: George Weigt <g808391@icloud.com>

References

Examples

```r
plotc(wine)

## Define a suitable data model
M = c("log","season",12,"trend",1)

## Obtain residuals and check for stationarity
e = Resid(wine,M)
test(e)

## Define a suitable ARMA model
a = arma(e,p=1,q=1)

## Obtain residuals and check for white noise
ee = Resid(wine,M,a)
test(ee)

## Forecast future values
forecast(wine,M,a)
```

aacvf

Autocovariance of ARMA model

Description
Autocovariance of ARMA model

Usage

```r
aacvf(a, h)
```

Arguments

- **a**: ARMA model
- **h**: Maximum lag
Details

The ARMA model is a list with the following components.

- phi: Vector of AR coefficients (index number equals coefficient subscript)
- theta: Vector of MA coefficients (index number equals coefficient subscript)
- sigma2: White noise variance

Value

Returns a vector of length $h+1$ to accommodate lag 0 at index 1.

See Also

arma

Examples

```r
a = arma(Sunspots, 2, 0)
aacf(a, 40)
```

Description

Autocovariance of data

Usage

```r
acvf(x, h = 40)
```

Arguments

- x: Time series data
- h: Maximum lag

Value

Returns a vector of length $h+1$ to accommodate lag 0 at index 1.

See Also

plota

Examples

```r
acvf(Sunspots)
```
airpass

Number of international airline passengers, 1949 to 1960

Description

Number of international airline passengers, 1949 to 1960

Examples

plotc(airpass)

ar.inf

Compute AR infinity coefficients

Description

Compute AR infinity coefficients

Usage

ar.inf(a, n = 50)

Arguments

a ARMA model
n Order

Details

The ARMA model is a list with the following components.

phi Vector of AR coefficients (index number equals coefficient subscript)
theta Vector of MA coefficients (index number equals coefficient subscript)
sigma2 White noise variance

Value

Returns a vector of length n+1 to accommodate coefficient 0 at index 1.

See Also

ma.inf
Examples

```
   a = yw(Sunspots,2)
ar.inf(a)
```

Description

Forecast using ARAR algorithm

Usage

```
arar(y, h = 10, opt = 2)
```

Arguments

- `y` Time series data
- `h` Steps ahead
- `opt` Display option (0 silent, 1 tabulate, 2 plot and tabulate)

Value

Returns the following list invisibly.

- `pred` Predicted values
- `se` Standard errors
- `l` Lower bounds (95% confidence interval)
- `u` Upper bounds

See Also

- forecast

Examples

```
arar(airpass)
```
Estimate ARMA model coefficients using maximum likelihood

Usage

arma(x, p = 0, q = 0)

Arguments

x Time series data
p AR order
q MA order

Details

Calls the standard R function arima to estimate AR and MA coefficients. The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

phi Vector of AR coefficients (index number equals coefficient subscript)
theta Vector of MA coefficients (index number equals coefficient subscript)
sigma2 White noise variance
aic Akaike information criterion corrected
se.phi Standard errors for the AR coefficients
se.theta Standard errors for the MA coefficients

See Also

autofit burg hannan ia yw

Examples

M = c("diff",1)
e = Resid(dowj,M)
a = arma(e,1,0)
print(a)
autofit

Find the best model from a range of possible ARMA models

Description

Find the best model from a range of possible ARMA models

Usage

```r
autofit(x, p = 0:5, q = 0:5)
```

Arguments

- `x`: Time series data (typically residuals from `Resid`)
- `p`: Range of AR orders
- `q`: Range of MA orders

Details

Tries all combinations of `p` and `q` and returns the model with the lowest AICC. The arguments `p` and `q` should be small ranges as this function can be slow otherwise. The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

- `phi`: Vector of AR coefficients (index number equals coefficient subscript)
- `theta`: Vector of MA coefficients (index number equals coefficient subscript)
- `sigma2`: White noise variance
- `aicc`: Akaike information criterion corrected
- `se.phi`: Standard errors for the AR coefficients
- `se.theta`: Standard errors for the MA coefficients

See Also

`arma`

Examples

```r
M = c("diff",1)
e = Resid(dowj,M)
a = autofit(e)
print(a)
```
burg
Estimate AR coefficients using the Burg method

Description

Estimate AR coefficients using the Burg method

Usage

```
burg(x, p)
```

Arguments

- `x`: Time series data (typically residuals from \texttt{Resid})
- `p`: AR order

Details

The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

- `phi`: Vector of AR coefficients (index number equals coefficient subscript)
- `theta`: 0
- `sigma2`: White noise variance
- `aic`: Akaike information criterion corrected
- `se.phi`: Standard errors for the AR coefficients
- `se.theta`: 0

See Also

\texttt{arma} \hspace{1em} \texttt{hannan} \hspace{1em} \texttt{ia} \hspace{1em} \texttt{yw}

Examples

```r
M = c("diff",1)
e = Resid(dowj,M)
a = burg(e,1)
print(a)
```
check

Check for causality and invertibility

Description

Check for causality and invertibility

Usage

check(a)

Arguments

a ARMA model

Details

The ARMA model is a list with the following components.

- phi Vector of AR coefficients (index number equals coefficient subscript)
- theta Vector of MA coefficients (index number equals coefficient subscript)
- sigma2 White noise variance

Value

None

Examples

a = specify(ar=c(0,0,.99))
check(a)

deads

USA accidental deaths, 1973 to 1978

Description

USA accidental deaths, 1973 to 1978

Examples

plotc(deaths)
Forecast future values

Description

Forecast future values

Usage

```r
forecast(x, M, a, h = 10, opt = 2, alpha = 0.05)
```

Arguments

- `x`: Time series data
- `M`: Data model
- `a`: ARMA model
- `h`: Steps ahead
- `opt`: Display option (0 silent, 1 tabulate, 2 plot and tabulate)
- `alpha`: Level of significance

Details

The data model can be `NULL` for none. Otherwise `M` is a vector of function names and arguments.

Example:

```r
M = c("log", "season", 12, "trend", 1)
```

The above model takes the log of the data, then subtracts a seasonal component of period 12, then subtracts a linear trend component.

These are the available functions:

- `diff`: Difference the data. Has a single argument, the lag.
- `hr`: Subtract harmonic components. Has one or more arguments, each specifying the number of observations per harmonic.
- `log`: Take the log of the data, has no arguments.
- `season`: Subtract a seasonal component. Has a single argument, the number of observations per season.
- `trend`: Subtract a trend component. Has a single argument, the order of the trend (1 linear, 2 quadratic, etc.)
At the end of the model there is an implicit subtraction of the mean operation. Hence the resulting time series always has zero mean.

All of the functions are inverted before the forecast results are displayed.

Value

Returns the following list invisibly.

- *pred*: Predicted values
- *se*: Standard errors (not returned for data models with log)
- *l*: Lower bounds (95% confidence interval)
- *u*: Upper bounds

See Also

- *arma Resid test*

Examples

```r
M = c("log","season",12,"trend",1)
e = Resid(wine,M)
a = arma(e,1,1)
forecast(wine,M,a)
```

hannan
Estimate ARMA coefficients using the Hannan-Rissanen algorithm

Description

Estimate ARMA coefficients using the Hannan-Rissanen algorithm

Usage

```r
hannan(x, p, q)
```

Arguments

- *x*: Time series data (typically residuals from Resid)
- *p*: AR order
- *q*: MA order (q > 0)

Details

The innovations algorithm is used to estimate white noise variance.
Value

Returns an ARMA model consisting of a list with the following components.

- **phi**: Vector of AR coefficients (index number equals coefficient subscript)
- **theta**: Vector of MA coefficients (index number equals coefficient subscript)
- **sigma2**: White noise variance
- **aicc**: Akaike information criterion corrected
- **se.phi**: Standard errors for the AR coefficients
- **se.theta**: Standard errors for the MA coefficients

See Also

- *arma*
- *burg*
- *ia*
- *yw*

Examples

```r
M = c("diff", 12)
e = Resid(deaths, M)
a = hannan(e, 1, 1)
print(a)
```

hr

Estimate harmonic components

Description

Estimate harmonic components

Usage

```
hr(x, d)
```

Arguments

- **x**: Time series data
- **d**: Vector of harmonic periods

Value

Returns a vector the same length as `x`. Subtract from `x` to obtain residuals.

Examples

```r
y = hr(deaths, c(12, 6))
plotc(deaths, y)
```
Estimate MA coefficients using the innovations algorithm

Description

Estimate MA coefficients using the innovations algorithm

Usage

`ia(x, q, m = 17)`

Arguments

- `x` Time series data (typically residuals from `Resid`)
- `q` MA order
- `m` Recursion level

Details

Normally `m` should be set to the default value. The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

- `phi` 0
- `theta` Vector of MA coefficients (index number equals coefficient subscript)
- `sigma2` White noise variance
- `aicc` Akaike information criterion corrected
- `se.phi` 0
- `se.theta` Standard errors for the MA coefficients

See Also

`arma burg hannan yw`

Examples

```r
M = c("diff",1)
e = Resid(dowj,M)
a = ia(e,1)
print(a)
```
lake

Level of Lake Huron, 1875 to 1972

Examples
plotc(lake)

ma.inf

Compute MA infinity coefficients

Description
Compute MA infinity coefficients

Usage
ma.inf(a, n = 50)

Arguments
a ARMA model
n Order

Details
The ARMA model is a list with the following components.

phi Vector of AR coefficients (index number equals coefficient subscript)
theta Vector of MA coefficients (index number equals coefficient subscript)
sigma2 White noise variance

Value
Returns a vector of length n+1 to accommodate coefficient 0 at index 1.

See Also
ar.inf
Examples

M = c("diff",12)
e = Resid(deaths,M)
a = arma(e,1,1)
ama.inf(a,10)

periodogram

Plot a periodogram

Description

Plot a periodogram

Usage

periodogram(x, q = 0, opt = 2)

Arguments

x
Time series data

q
MA filter order

opt
Plot option (0 silent, 1 periodogram only, 2 periodogram and filter)

Details

The filter q can be a vector in which case the overall filter is the composition of MA filters of the designated orders.

Value

The periodogram vector divided by 2pi is returned invisibly.

See Also

plots

Examples

periodogram(Sunspots,c(1,1,1,1))
plota

Plot data and/or model ACF and PACF

Description
Plot data and/or model ACF and PACF

Usage
plota(u, v = NULL, h = 40)

Arguments
u,v
Data and/or ARMA model in either order
h
Maximum lag

Value
None

Examples
plota(Sunspots)
a = yw(Sunspots,2)
plota(Sunspots,a)

plotc
Plot one or two time series

Description
Plot one or two time series

Usage
plotc(y1, y2 = NULL)

Arguments
y1
Data vector (plotted in blue with knots)
y2
Data vector (plotted in red, no knots)

Value
None
Examples

```
plotc(uspop)
y = trend(uspop,2)
plotc(uspop,y)
```

plots

Plot spectrum of data or ARMA model

Description

Plot spectrum of data or ARMA model

Usage

```
plots(u)
```

Arguments

- **u**
 - Data vector or an ARMA model

Value

None

See Also

- `periodogram`

Examples

```
a = specify(ar=c(0,0,.99))
plots(a)
```

Resid

Compute residuals

Description

Compute residuals

Usage

```
Resid(x, M = NULL, a = NULL)
```
Arguments

- **x**: Time series data
- **M**: Data model
- **a**: ARMA model

Details

The data model can be NULL for none. Otherwise, M is a vector of function names and arguments.

Example:

```r
M = c("log","season",12,"trend",1)
```

The above model takes the log of the data, then subtracts a seasonal component of period 12, then subtracts a linear trend component.

These are the available functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>Difference the data. Has a single argument, the lag.</td>
</tr>
<tr>
<td>hr</td>
<td>Subtract harmonic components. Has one or more arguments, each specifying the number of observations per harmonic.</td>
</tr>
<tr>
<td>log</td>
<td>Take the log of the data, has no arguments.</td>
</tr>
<tr>
<td>season</td>
<td>Subtract a seasonal component. Has a single argument, the number of observations per season.</td>
</tr>
<tr>
<td>trend</td>
<td>Subtract a trend component. Has a single argument, the order of the trend (1 linear, 2 quadratic, etc.).</td>
</tr>
</tbody>
</table>

At the end of the model there is an implicit subtraction of the mean operation. Hence the resulting time series always has zero mean.

Value

Returns a vector of residuals the same length as x.

See Also

- `test`

Examples

```r
M = c("log","season",12,"trend",1)
e = Resid(wine,M)

a = arma(e,1,1)
e = Resid(wine,M,a)
```

season

Estimate seasonal component

Description

Estimate seasonal component
Usage

```r
season(x, d)
```

Arguments

- **x**: Time series data
- **d**: Number of observations per season

Value

Returns a vector the same length as `x`. Subtract from `x` to obtain residuals.

See Also

- `trend`

Examples

```r
y = season(deaths, 12)
plotc(deaths, y)
```

Description

Run a self test

Usage

```r
selftest()
```

Details

This function is a useful check if the code is modified.

Value

None

Examples

```r
selftest()
```
sim

Generate synthetic observations

Description

Generate synthetic observations

Usage

```r
sim(a, n = 100)
```

Arguments

- `a`: ARMA model
- `n`: Number of synthetic observations required

Details

The ARMA model is a list with the following components.

- `phi`: Vector of AR coefficients (index number equals coefficient subscript)
- `theta`: Vector of MA coefficients (index number equals coefficient subscript)
- `sigma2`: White noise variance

Value

Returns a vector of `n` synthetic observations.

Examples

```r
a = specify(ar=c(0,0,.99))
x = sim(a,60)
plotc(x)
```

smooth.exp

Apply an exponential filter

Description

Apply an exponential filter

Usage

```r
smooth.exp(x, alpha)
```
Arguments

x Time series data
alpha Smoothness setting, 0-1

Details

Zero is maximum smoothness.

Value

Returns a vector of smoothed data the same length as x.

Examples

\[y = \text{smooth.exp}(\text{strikes}, .4) \]
\[\text{plotc(strikes, y)} \]

smooth.fft Apply a low pass filter

Description

Apply a low pass filter

Usage

\[\text{smooth.fft}(x, f) \]

Arguments

x Time series data
f Cut-off frequency, 0-1

Details

The cut-off frequency is specified as a fraction. For example, \(c = .25 \) passes the lowest 25% of the spectrum.

Value

Returns a vector the same length as \(x \).

Examples

\[y = \text{smooth.fft}(\text{deaths}, .1) \]
\[\text{plotc(deaths, y)} \]
smooth.ma

Apply a moving average filter

Description

Apply a moving average filter

Usage

smooth.ma(x, q)

Arguments

x Time series data
q Filter order

Details

The averaging function uses \(2q+1\) values.

Value

Returns a vector the same length as \(x\).

Examples

\[
y = \text{smooth.ma}(\text{strikes}, 2) \\
\text{plotc(strikes,y)}
\]

smooth.rank

Apply a spectral filter

Description

Apply a spectral filter

Usage

smooth.rank(x, k)

Arguments

x Time series data
k Number of frequencies
Details

Passes the mean and the k frequencies with the highest amplitude. The remainder of the spectrum is filtered out.

Value

Returns a vector the same length as x.

Examples

```r
y = smooth.rank(deaths,2)
plotc(deaths,y)
```

specify
Specify an ARMA model

Description

Specify an ARMA model

Usage

```r
specify(ar = 0, ma = 0, sigma2 = 1)
```

Arguments

- `ar` Vector of AR coefficients (index number equals coefficient subscript)
- `ma` Vector of MA coefficients (index number equals coefficient subscript)
- `sigma2` White noise variance

Value

Returns an ARMA model consisting of a list with the following components.

- `phi` Vector of AR coefficients (index number equals coefficient subscript)
- `theta` Vector of MA coefficients (index number equals coefficient subscript)
- `sigma2` White noise variance

Examples

```r
specify(ar=c(0,0,.99))
```
strikes

USA union strikes, 1951-1980

Description
USA union strikes, 1951-1980

Examples
plotc(strikes)

Sunspots
Number of sunspots, 1770 to 1869

Description
Number of sunspots, 1770 to 1869

Examples
plotc(Sunspots)

test
Test residuals for stationarity and randomness

Description
Test residuals for stationarity and randomness

Usage
test(e)

Arguments
e

Details
Plots ACF, PACF, residuals, and QQ. Displays results for Ljung-Box, McLeod-Li, turning point, difference-sign, and rank tests. The plots can be used to check for stationarity and the other tests check for white noise.
trend

Value

None

See Also

Resid

Examples

```r
M = c("log", "season", 12, "trend", 1)
e = Resid(wine, M)
test(e) ## Is e stationary?
a = arma(e, 1, 1)
e = Resid(wine, M, a)
test(ee) ## Is ee white noise?
```

<table>
<thead>
<tr>
<th>trend</th>
<th>Estimate trend component</th>
</tr>
</thead>
</table>

Description

Estimate trend component

Usage

```r
trend(x, p)
```

Arguments

- `x` Time series data
- `p` Polynomial order (1 linear, 2 quadratic, etc.)

Value

Returns a vector the same length as `x`. Subtract from `x` to obtain residuals. The returned vector is the least squares fit of a polynomial to the data.

See Also

season

Examples

```r
y = trend(uspop, 2)
plotc(uspop, y)
```
wine

Australian red wine sales, January 1980 to October 1991

Description
Australian red wine sales, January 1980 to October 1991

Examples
plotc(wine)

yw
Estimate AR coefficients using the Yule-Walker method

Description
Estimate AR coefficients using the Yule-Walker method

Usage
yw(x, p)

Arguments
x Time series data (typically residuals from Resid)
p AR order

Details
The innovations algorithm is used to estimate white noise variance.

Value
Returns an ARMA model consisting of a list with the following components.

phi Vector of AR coefficients (index number equals coefficient subscript)
theta 0
sigma2 White noise variance
aicc Akaike information criterion corrected
se.phi Standard errors for the AR coefficients
se.theta 0

See Also
arma burg hannan ia
Examples

\[
\begin{align*}
M &= c("diff", 1) \\
e &= \text{Resid}(\text{dowj}, M) \\
a &= \text{yw}(e, 1)
\end{align*}
\]
Index

* datasets
 airpass, 5
 deaths, 10
 dowj, 11
 lake, 15
 strikes, 25
 Sunspots, 25
 wine, 27

* package
 itsmr-package, 2
 itsmr-package, 2

aacvf, 3
acvf, 4
airpass, 5
ar.inf, 5, 15
arar, 6
arma, 4, 7, 8, 9, 12–14, 27
autofit, 7, 8

burg, 7, 9, 13, 14, 27
check, 10
deaths, 10
dowj, 11

forecast, 6, 11
hannan, 7, 9, 12, 14, 27
hr, 13
ia, 7, 9, 13, 14, 27
itsmr (itsmr-package), 2
itsmr-package, 2

lake, 15

ma.inf, 5, 15

periodogram, 16, 18
plota, 4, 17
plotc, 17
plots, 16, 18
Resid, 12, 18, 26
season, 19, 26
selftest, 20
sim, 21
smooth.exp, 21
smooth.fft, 22
smooth.ma, 23
smooth.rank, 23
specify, 24
strikes, 25
Sunspots, 25
test, 12, 19, 25
trend, 20, 26

wine, 27
yw, 7, 9, 13, 14, 27

29