Package ‘logcondiscr’

October 13, 2022

Type Package

Title Estimate a Log-Concave Probability Mass Function from Discrete
 i.i.d. Observations

Version 1.0.6

Date 2015-07-03

Author Kaspar Rufibach <kaspar.rufibach@gmail.com> and Fadoua Balab-
 daoui <fadoua@ceremade.dauphine.fr> and Hanna Jankowski <hkj@mathstat.yorku.ca> and Kathrin Wey-
 ermann <kathrin.weyermann@bkw-fmb.ch>

Maintainer Kaspar Rufibach <kaspar.rufibach@gmail.com>

Depends Matrix, mvtnorm, cobs

Imports stats

Description Given independent and identically distributed observations X(1), ..., X(n), allows to com-
 pute the maximum likelihood estimator (MLE) of probability mass function (pmf) under the as-
 sumption that it is log-concave, see Weyermann (2007) and Balabdaoui, Jankowski, Ru-
 fibach, and Pavlides (2012). The main functions of the package are 'logConDiscrMLE' that al-
 lows computation of the log-concave MLE, 'logConDiscrCI' that computes pointwise confi-
 dence bands for the MLE, and 'kInflatedLogConDiscr' that computes a mixture of a log-
 concave PMF and a point mass at k.

License GPL (>= 2)

URL http://www.kasparrufibach.ch,
 http://www.ceremade.dauphine.fr/~fadoua,
 http://www.math.yorku.ca/~hkj

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-03 12:51:05

R topics documented:

 logcondiscr-package ... 2
 internal ... 3
Description

Implements the maximum likelihood estimator (MLE) for a probability mass function (PMF) under the assumption of log-concavity from i.i.d. data.

Details

The main functions in the package are:

- **logConDiscrMLE**: Compute the maximum likelihood estimator (MLE) of a log-concave PMF from i.i.d. data. The constrained log-likelihood function is maximized using an active set algorithm as initially described in Weyermann (2007).
- **logConDiscrCI**: Compute the maximum likelihood estimator (MLE) of a log-concave PMF from i.i.d. data and corresponding, asymptotically valid, pointwise confidence bands as developed in Balabdaoui et al (2012).
- **kInflatedLogConDiscr**: Compute an estimate of a mixture of a log-concave PMF that is inflated at \(k \), from i.i.d. data, using an EM algorithm.

Author(s)

Kaspar Rufibach (maintainer) <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch
Fadoua Balabdaoui <fadoua@ceremade.dauphine.fr>
http://www.ceremade.dauphine.fr/~fadoua
Hanna Jankowski <hkj@mathstat.yorku.ca>
http://www.math.yorku.ca/~hkj
Kathrin Weyermann
References

See Also

Functions to estimate the log-concave MLE for a univariate continuous distribution are provided in the package *logcondens* and for observations in more than one dimension in *LogConDEAD*.

Examples

```r
## see the help files for the abovementioned functions for examples
```

Functions for estimation of a log-concave probability mass function via maximum likelihood

Description

Internal functions for the estimation of a log-concave probability mass function. These functions are not intended to be called by the user directly.

Direction Compute vector that points in direction of \(\max L(\psi) \) via Newton step.

dMLE Compute the vector \(\psi \) s.t. the log-likelihood function \(L \), as implemented in \(\text{LikFunk} \), is maximized over all PMFs (under no additional restrictions, though).

GradientL Gradient of \(\text{LikFunk} \).

HesseL Hesse matrix of \(\text{LikFunk} \).

J00 Function introduced in Section 2.3 in Weyermann (2007), defined as

\[
J^{\delta_k}(\psi_k, \psi_{k+1}) := \sum_{j=0}^{\delta_k} \exp\left((1 - j/\delta_k)\psi_k + (j/\delta_k)\psi_{k+1} \right).
\]

This function is used to compute the value of the log-likelihood in \(\text{LikFunk} \).

J10 Derivative of \(J^{\delta_k}(\psi_k, \psi_{k+1}) \) w.r.t to the first argument.

J11 Derivative of \(J^{\delta_k}(\psi_k, \psi_{k+1}) \) w.r.t to both arguments.

J20 Second derivative of \(J^{\delta_k}(\psi_k, \psi_{k+1}) \) w.r.t to the first argument.

LikFunk The log-likelihood function for the discrete log-concave MLE.

LocalCoarsen Auxiliary function.

LocalConcavity Auxiliary function.

LocalExtend Auxiliary function.
kInflatedLogConDiscr

Description

Using an EM algorithm, compute an estimate of a mixture of a point mass at \(k \) and a log-concave probability mass function from discrete i.i.d. data.

Usage

```r
kInflatedLogConDiscr(x, k = 0, prec1 = 1e-10, prec2 = 1e-15, itermax = 200, output = TRUE, theta0 = 0.5, p0 = NA)
```

Arguments

- **x**: Vector of observations.
- **k**: Point at which inflation should be assumed. Must be in \(x_1, x_1+1, \ldots, x_{n-1}, x_n \).
- **prec1**: Precision for stopping criterion.
- **prec2**: Precision to remove ends of support in case weights < `prec2`.

References

See Also

All these functions are used by the function `logConDiscrMLE`.

kInflatedLogConDiscr
Compute a mixture of a point mass at 0 and a log-concave probability mass function from i.i.d. data
InflatedLogConDiscr

itermax Maximal number of iterations of EM algorithm.
output Logical, if TRUE, progress of EM algorithm is shown.
theta0 Optional initialization for θ_0, the point mass at k.
p0 Optional initialization for the PMF.

Details

Given a vector of observations $x_n = (x_1, \ldots, x_n)$ from a discrete PMF with a (potential) point mass at k (typically $k = 0$), InflatedLogConDiscr computes a pmf that is a mixture between a point mass at k and a log-concave PMF on x. To accomplish this, an EM algorithm is used.

Value

A list containing the following elements:

- **z** The support.
- **f** The estimated k-inflated log-concave PMF.
- **E(L)** The value of the expected composite log-likelihood at the maximum.
- **loglik** The value of the composite log-likelihood at the maximum.
- **theta** The estimated weight at k.
- **logconc.pmf** The log-concave part of the mixture.
- **logconc.z** The support of logconc.pmf.

Author(s)

Kaspar Rufibach (maintainer) <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch
Fadoua Balabdaoui <fadoua@ceremade.dauphine.fr>
http://www.ceremade.dauphine.fr/~fadoua
Hanna Jankowski <hkj@mathstat.yorku.ca>
http://www.math.yorku.ca/~hkj
Kathrin Weyermann

References

Examples

```r
## -----------------------------------------------
## generate zero-inflated negative binomial sample
## -----------------------------------------------
```
```r
set.seed(2011)
n <- 100
theta <- 0.05
r <- 6
p <- 0.3
x <- rnbinom(n, r, p)

## inflate at 0
x <- ifelse(runif(n) <= theta, 0, x)

## estimate log-concave MLE
fit1 <- logConDiscrMLE(x, w = NA, psi_o = NA, prec = 1e-05, output = TRUE)

## estimate zero-inflated log-concave MLE
fit2 <- kInflatedLogConDiscr(x, k = 0)

## plot the results
par(mfrow = c(1, 1), las = 1)
plot(fit1$x, exp(fit1$psi), type = "b", col = 2, xlim = range(x), xlab = "x",
     ylim = c(0, max(exp(fit1$psi), fit2$f)), ylab = "PMF",
     main = "Estimate MLE from a zero-inflated negative-binomial", pch = 19)
lines(fit2$z, fit2$f, type = "b", col = 4, pch = 15)

## add the true PMF we sampled from
z <- fit2$z
f.true <- theta * c(1, rep(0, length(z) - 1)) + (1 - theta) * dnbinom(z, r, p)
lines(z, f.true, col = 6, type = "b", pch = 17)
legend("topright", c("log-concave MLE", "zero-inflated log-concave MLE",
                    "true PMF"), col = c(2, 4, 6), lty = c(1, 1, 1), pch = c(19, 15, 17),
                        bty = "n")

## Not run:
## -----------------------------------------------
## generate seven-inflated negative binomial sample
## -----------------------------------------------
theta <- 0.05
r <- 4
p <- 0.3
n <- 10000
x <- rnbinom(n, r, p)
x <- ifelse(runif(n) <= theta, 7, x)
x <- c(x, rep(7, 10))

## compute different estimates
zero.mle <- kInflatedLogConDiscr(x, k = 7)
mle <- logConDiscrMLE(x, output = FALSE)
f.mle <- exp(mle$psiSupp)
z <- zero.mle$z
f1 <- theta * c(rep(0, 7 - min(x)), 1, rep(0, max(x) - 7))
f2 <- (1 - theta) * dnbinom(z, r, p)
f.true <- f1 + f2
true <- dnbinom(z, r, p)
```
Compute pointwise confidence bands for the log-concave MLE of a PMF

Description

Compute pointwise confidence bands for the log-concave maximum likelihood estimate of a log-concave probability mass function based on the limiting theory developed in Balabdaoui et al (2012).

Usage

```r
logConDiscrCI(dat, conf.level = 0.95, type = c("MLE", "all")[1],
               B = 1000, output = TRUE, seed = 2011)
```

Arguments

- `dat` : Data to compute MLE and confidence band for.
- `conf.level` : The confidence level to be used.
To compute confidence bands one theoretically needs to know the knots of the true PMF. For type \texttt{MLE} the knots of the MLE will be used instead and for type \texttt{all} all observations will be considered knots. The latter is conservative and gives pointwise confidence intervals that are based on standard errors from a Normal approximation (the latter comes from the asymptotic theory in Balabdaoui et al, 2011).

\textbf{B} \quad \text{Number of samples to be drawn to compute resampling quantiles.}

\textbf{output} \quad \text{If \texttt{TRUE}, progress of computations is output.}

\textbf{seed} \quad \text{Optional seed.}

\section*{Details}

The pointwise confidence bands are based on the limiting theory in Balabdaoui et al (2011).

\section*{Value}

A list with the following components:

- \textbf{MLE} \quad \text{The estimated MLE (simply the output list of the function \texttt{logConDiscrMLE} applied to \texttt{dat}).}

- \textbf{emp} \quad \text{A dataframe containing two columns: the unique sorted observations and the empirical PMF.}

- \textbf{CIs} \quad \text{The computed confidence intervals for each } x \in \{\min(\text{dat}), \ldots, \max(\text{dat})\}.

\section*{Note}

Values outside \([0, 1]\) will be clipped. As a consequence, coverage may be higher than \(1 - \alpha\).

\section*{Author(s)}

Kaspar Rufibach (maintainer) <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

Fadoua Balabdaoui <fadoua@ceremade.dauphine.fr>
http://www.ceremade.dauphine.fr/~fadoua

Hanna Jankowski <hkj@mathstat.yorku.ca>
http://www.math.yorku.ca/~hkj

Kathrin Weyermann

\section*{References}

Examples

```r
# compute MLE and confidence bands for a random sample from a Poisson distribution
set.seed(2011)
x <- sort(rpois(n = 100, lambda = 2))
mle <- logConDiscrMLE(x)
psi <- mle$psi

# compute confidence bands
CIs <- logConDiscrCI(x, type = "MLE", output = TRUE, seed = 20062011)$CIs

# plot estimated PMF and log of estimate
true <- dpois(0:20, lambda = 2)
par(mfrow = c(1, 2), las = 1)
plot(mle$x, exp(psi), type = "b", col = 2, xlim = c(min(x), max(x) + 1), xlab = "x", ylab = "PMF", main = "Estimate MLE from a Poisson", pch = 19)
legend("topright", c("truth", "MLE", "confidence bands"), col = c(4, 2, 2), lty = c(1, 1, 2), pch = c(0, 19, NA), bty = "n")
lines(0:20, true, type = "l", col = 4)

# add true PMF
matlines(CIs[, 1], CIs[, 2:3], type = "l", lty = 2, col = 2)

# log-density
plot(mle$x, psi, type = "p", col = 2, xlim = c(min(x), max(x) + 1), xlab = "x", ylab = "PMF", main = "Estimate MLE from a Poisson", pch = 19, ylim = c(-6, log(max(exp(psi), true, CIs[, 3]))))
lines(0:20, log(true), type = "l", col = 4)

# add confidence bands
matlines(CIs[, 1], log(CIs[, 2:3]), type = "l", lty = 2, col = 2)

# compute confidence bands when only estimate (not original data) are available (as a an example we simply use the estimator from above)

x.est <- 0:6
est <- c(0.09, 0.30, 0.30, 0.19, 0.09, 0.02, 0.01)
ex <- rep(0:6, times = 100 * est)
```

logConDiscrMLE

Compute log-concave probability mass function from i.i.d. data
Description

Compute the maximum likelihood estimate of a log-concave probability mass function from discrete i.i.d. data.

Usage

logConDiscrMLE(x, w = NA, psi_o = NA, prec = 1e-05, output = TRUE)

Arguments

x
Vector of observations. If w = NA, then weights will be generated for each non-unique observation of x.

w
If w = NA, weights will be generated from x. If w != NA, then it is assumed that x and w are of equal length and the elements in w correspond to the weights in x.

psi_o
Optional start vector.

prec
Precision for stopping criterion.

output
Logical, if TRUE, progress of the active set algorithm is shown.

Details

Given a vector of observations \(x_n = (x_1, \ldots, x_n) \) from a discrete PMF, \texttt{logConDiscrMLE} computes a function \(\hat{p}_k \) on \(\{x_1, \ldots, x_n\} \) with knots only in \(\{x_1, \ldots, x_n\} \) such that

\[
L(p) = \sum_{i=1}^{n} w_i \log(p_i)
\]

is maximal over all log-concave PMFs \(\{p_k\}, k = 1, \ldots, n \), where \(w_i \) is the frequency of the observation \(x_i \). To accomplish this, an active set algorithm is used.

Value

A list containing the following elements:

- x
 Vector of unique observations, sorted.
- w
 Generated weights.
- psi
 The estimated log-density on the grid of unique, sorted observations.
- L
 The value of the log-likelihood at the maximum.
- IsKnot
 Binary vector where \(\text{IsKnot}_k = 1 \) if \(\psi \) has a knot at \(x_k \).
- xSupp
 The full support \(\{x_1, x_1 + 1, \ldots, x_m - 1, x_m\} \).
- psiSupp
 \(\psi \) interpolated on xSupp.
logConDiscrMLE

Author(s)
Kaspar Rufibach (maintainer) <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch
Fadoua Balabdaoui <fadoua@ceremade.dauphine.fr>
http://www.ceremade.dauphine.fr/~fadoua
Hanna Jankowski <hkj@mathstat.yorku.ca>
http://www.math.yorku.ca/~hkj
Kathrin Weyermann

References

Examples

compute MLE for a random sample from a Poisson distribution

x <- sort(rpois(n = 100, lambda = 2))
mle <- logConDiscrMLE(x)
psi <- mle$psi

plot estimated PMF and log of estimate
par(mfrow = c(1, 2), las = 1)
true <- dpois(0:20, lambda = 2)
plot(mle$x, exp(psi), type = "p", col = 2, xlim = range(x), xlab = "x",
 ylab = "PMF", main = "Estimate MLE from a Poisson", pch = 19)
legend("topright", c("truth", "MLE"), col = c(4, 2), lty = c(1, 0),
 pch = c(0, 19), bty = "n")

add true PMF
lines(0:20, true, type = "l", col = 4)

log-density
plot(mle$x, psi, type = "p", col = 2, xlab = "x",
 ylab = "PMF", main = "Estimate MLE from a Poisson", pch = 19)
lines(0:20, log(true), type = "l", col = 4)

use a priori specified weights: mle = mle2
mle2 <- logConDiscrMLE(x = unique(x), w = table(x))

Illustrate the limit process: the code below can be used to
to reproduce the limit process figure in Balabdaoui et al (2011)
a <- 1
b <- 7
c <- 8
d <- 11
e <- 2
n <- 10 ^ 2

support
x <- seq(a, d, by = 1)

true density
dens <- dTriangular(a, b, c, d, e)
logdens <- log(dens)
rand <- rTriangular(n, a, b, c, d, e)$rand

empirical
emp <- table(rand) / n
x.emp <- names(table(rand))

log-concave MLE
mle <- logConDiscrMLE(rand, output = FALSE)

plot log PMF and PMF
par(mfrow = c(1, 2))
plot(x, logdens, type = "l", col = 1, pch = 19, main = "log-density",
xlim = c(a, d), ylim = range(range(log(emp), logdens)))
lines(x, logdens, type = "l", col = 1, lwd = 0.1)
points(x.emp, log(emp), col = 4, pch = 19)
points(mlex, mlepsi, col = 6, pch = 19)
abline(v = mle$x[mle$isKnot == 1], lty = 3, col = 3)

plot(x, dens, type = "l", col = 1, pch = 19, main = "density",
xlim = c(a, d), ylim = c(0, max(dens, emp)))
lines(x, dens, type = "l", col = 1, lwd = 0.1)
points(x.emp, emp, col = 4, pch = 19)
points(mle$x, exp(mle$psi), col = 6, pch = 19)
legend("topleft", c("truth", "MLE", "knots of the MLE", "empirical"),
col = c(1, 6, 3, 4),pch = c(NA, 19, NA, 19), lty = c(1, NA, 3, NA),
bg = "white", bty = "n")
abline(v = mle$x[mle$isKnot == 1], lty = 3, col = 3)

Now compute and plot Y(x) and H(x)

xla <- paste("x = \{r = \", a, ", \ldots, \ s - 1 = \", b - 1, "\}" , sep = ")
par(mfcol = c(2, 2), oma = rep(0, 4), mar = c(4.5, 4.5, 2, 1), las = 1)
plot(x, logdens, type = "b", col = 2, pch = 19, main = "log of normalised triangular pmf",
xlim = c(a, d), xaxt = "n", xlab = "x",
ylab = "log of normalised pmf")
axis(1, at = c(a, b, d), labels = paste(c("a = \", "b = \", "d = "),
c(a, b, d), sep = ""))
compute \(H(x) \)

\[
r <- a \\
s <- b \\
ind <- r:(s - 1) \\
px <- dens \\
p_rs <- px[ind] \\
m <- s - r
\]

generate one observation from the distribution of \(U(F(x)) - U(F(x - 1)) \)

\[
sigma <- \text{diag}(m) * 0 \\
\text{for (i in 1:m)}{ \\
 \text{for (j in 1:m)}{ \\
 \sigma[i, j] <- p_rs[i] * (i == j) - p_rs[i] * p_rs[j] \\
 } \\
}\]

set.seed(23041977)

\[
cx <- \text{rep}(\text{NA}, d - a + 1) \\
cx[ind] <- \text{rmvnorm}(1, \text{mean = rep}(0, m), \sigma = \text{sigma}, \text{method = c"eigen", "svd", "chol"}[3]) \\
Ux <- \text{rep}(\text{NA}, \text{length(x)}) \\
Ux[ind] <- cx[ind]
\]

\[
X <- x[ind] \\
Y <- Ux[ind] / p_rs \\
W <- p_rs
\]

concave regression using 'cobs'

\[
\text{Res} <- \text{conreg}(x = X, y = Y, w = W, \text{verbose = TRUE}) \\
g <- \text{Res}\$yf \\
gKnots <- \text{Res}\$iKnots \\
\text{plot}(X, Y, \text{main = expression(\text{"The concave function } g^* \text{ that minimizes } \Phi(g)\")}, \text{xaxt = "n"}, \text{ylab = "g^*"}, \text{ylim = range(c(Y, g))}, \text{xlab = xla, type = "n"}) \\
\text{axis}(1, \text{at = 0:100, labels = 0:100}); \text{abline}(v = x[gKnots], \text{lty = 2, col = grey(0.75)}) \\
\text{lines}(X, g, \text{lwd = 2, col = 3, type = "b", pch = 1}) \\
\text{lines}(X, Y, \text{lwd = 1, col = 2, type = "p", pch = 19}) \\
\text{legend(\"bottomright", c("values of cx / px", "minimizer g^*"), \text{lty = c(NA, 1), pch = c(19, 1), col = 2:3, bty = "n", lwd = c(NA, 2)})}
\]

compute \(H(x) \) for \(x = r, \ldots, s - 1 \) and plot it

\[
gstar <- \text{rep}(\text{NA}, \text{length(x)}) \\
gstar[ind] <- g \\
xs <- r:(s - 1) \\
Hs <- \text{rep}(0, \text{length(xs)}) \\
\text{for (i in 2:length(xs))}{ \\
 \text{for (ks in r:(xs[i] - 1))}{ \\
 js <- r:ks \\
 } \\
}\]

\[
\text{plot}(xs, Hs, \text{main = expression(\text{"The concave function } g^* \text{ that minimizes } \Phi(g)\")}, \text{xaxt = "n"}, \text{ylab = "g^*"}, \text{ylim = range(c(Hs, gstar))}, \text{xlab = xla, type = "n"}) \\
\text{axis}(1, \text{at = 0:100, labels = 0:100}); \text{abline}(v = x[gstarKnots], \text{lty = 2, col = grey(0.75)}) \\
\text{lines}(xs, Hs, \text{lwd = 2, col = 3, type = "b", pch = 1}) \\
\text{lines}(xs, gstar, \text{lwd = 1, col = 2, type = "p", pch = 19}) \\
\text{legend(\"bottomright", c("values of cx / px", "minimizer g^*"), \text{lty = c(NA, 1), pch = c(19, 1), col = 2:3, bty = "n", lwd = c(NA, 2)})}
\]
Triangular Functions to compute a and simulate from a triangular probability mass function

Description

In Balabdaoui et al (2012) the triangular density, defined as

\[p_{x}^{a,b,c,d,e} = \frac{c(x-a)}{(b-a)} \]

for \(x \in \{a, \ldots, c\} \) and

\[p_{x}^{e,h,c,d,e} = \frac{(e-c)(x-b)}{(d-b) + c} \]
for \(x \in \{c, \ldots, d\} \), was used to illustrate the limit process of the log-concave MLE. In order to provide the code to generate the limit process figure in Balabdaoui et al (2012, see the example in `logConDiscrMLE` for the code to generate that figure) the functions `dTriangular` and `rTriangular` are included in this package. Note that `rTriangular` uses the rejection sampling algorithm in Devroye (1987) which was specifically developed to generate random numbers from a log-concave PMF.

Usage

```r
dTriangular(a, b, c, d, e)
rTriangular(n, a, b, c, d, e)
```

Arguments

- `a`: Left endpoint of triangular pmf.
- `b`: Mode of triangular pmf.
- `c`: Height at mode.
- `d`: Left endpoint.
- `e`: Height at left endpoint.
- `n`: Number of random numbers to generate.

Value

- `dTriangular`: returns a vector containing the value of the PMF at all values in \(x \in \{a, \ldots, d\} \).
- `rTriangular`: returns a list containing the elements:
 - `rand`: Vector with generated random numbers of length \(n \).
 - `x`: Vector \(\{a, \ldots, d\} \).
 - `dens`: Value of the pmf at \(x \).

Note

This function is used to generate the plot of the limit process in the help file for the function `logConDiscrMLE`.

Author(s)

- Kaspar Rufibach (maintainer) <kaspar.rufibach@gmail.com>
 http://www.kasparrufibach.ch
- Fadoua Balabdaoui <fadoua@ceremade.dauphine.fr>
 http://www.ceremade.dauphine.fr/~fadoua
- Hanna Jankowski <hkj@mathstat.yorku.ca>
 http://www.math.yorku.ca/~hkj
- Kathrin Weyermann
References

Examples

```r
## -------------------------------------------------------------
## compute values of triangular density and simulate from it
## -------------------------------------------------------------

a <- 1
b <- 7
c <- 8
d <- 11
e <- 2
n <- 10 ^ 2

## support
x <- seq(a, d, by = 1)

## true density
dens <- dTriangular(a, b, c, d, e)
logdens <- log(dens)
rand <- rTriangular(n, a, b, c, d, e)$rand

## does the same as rTriangular()
rand2 <- sample(x = a:d, size = n, prob = dens, replace = TRUE)
```
Index

* distribution
 internal, 3
 kInflatedLogConDiscr, 4
 logcondiscr-package, 2
 logConDiscrCI, 7
 logConDiscrMLE, 9
 Triangular, 14

* htest
 internal, 3
 kInflatedLogConDiscr, 4
 logcondiscr-package, 2
 logConDiscrCI, 7
 logConDiscrMLE, 9
 Triangular, 14

* nonparametric
 internal, 3
 kInflatedLogConDiscr, 4
 logcondiscr-package, 2
 logConDiscrCI, 7
 logConDiscrMLE, 9
 Triangular, 14

Direction, 3
Direction (internal), 3
dMLE, 3
dMLE (internal), 3
dTriangular (Triangular), 14

GradientL, 3
GradientL (internal), 3

HesseL, 3
HesseL (internal), 3

internal, 3

J00, 3
J00 (internal), 3
J10, 3
J10 (internal), 3
J11, 3

J11 (internal), 3
J20, 3
J20 (internal), 3

kInflatedLogConDiscr, 2, 4, 5
LikFunk, 3
LikFunk (internal), 3
LocalCoarsen, 3
LocalCoarsen (internal), 3
LocalConcavity, 3
LocalConcavity (internal), 3
LocalExtend, 3
LocalExtend (internal), 3
LocalMLE, 4
LocalMLE (internal), 3
LocalNormalize, 4
LocalNormalize (internal), 3
logcondiscr (logcondiscr-package), 2
logcondiscr-package, 2
logConDiscrCI, 2, 7
logConDiscrMLE, 2, 4, 9, 10, 15

rTriangular (Triangular), 14

StepSize, 4
StepSize (internal), 3

Triangular, 14