mlr3learners: Recommended Learners for 'mlr3'

Recommended Learners for 'mlr3'. Extends 'mlr3' with interfaces to essential machine learning packages on CRAN. This includes, but is not limited to: (penalized) linear and logistic regression, linear and quadratic discriminant analysis, k-nearest neighbors, naive Bayes, support vector machines, and gradient boosting.

Version: 0.5.6
Depends: mlr3 (≥ 0.14.1), R (≥ 3.1.0)
Imports: checkmate, data.table, mlr3misc (≥ 0.9.4), paradox, R6
Suggests: DiceKriging, e1071, glmnet, kknn, knitr, lgr, MASS, nnet, pracma, ranger, rgenoud, rmarkdown, testthat (≥ 3.0.0), xgboost (≥ 1.6.0)
Published: 2023-01-06
Author: Michel Lang ORCID iD [cre, aut], Quay Au ORCID iD [aut], Stefan Coors ORCID iD [aut], Patrick Schratz ORCID iD [aut]
Maintainer: Michel Lang <michellang at>
License: LGPL-3
NeedsCompilation: no
Materials: README NEWS
CRAN checks: mlr3learners results


Reference manual: mlr3learners.pdf


Package source: mlr3learners_0.5.6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): mlr3learners_0.5.6.tgz, r-oldrel (arm64): mlr3learners_0.5.6.tgz, r-release (x86_64): mlr3learners_0.5.6.tgz, r-oldrel (x86_64): mlr3learners_0.5.6.tgz
Old sources: mlr3learners archive

Reverse dependencies:

Reverse depends: GenericML
Reverse imports: DoubleML, highMLR, mlr3fairness, mlr3shiny, mlr3verse, NADIA, sense, SIAMCAT, spFSR
Reverse suggests: counterfactuals, cpi, mcboost, miesmuschel, mlr3benchmark, mlr3filters, mlr3fselect, mlr3hyperband, mlr3mbo, mlr3pipelines, mlr3spatial, mlr3tuning, mlr3tuningspaces, mlr3viz, mlrintermbo, vetiver, vivid


Please use the canonical form to link to this page.