Package ‘mmeln’

October 13, 2022

Type Package

Title Estimation of Multinormal Mixture Distribution

Version 1.4

Date 2019-12-17

Author Charles-Edouard Giguere

Maintainer Charles-Edouard Giguere <ce.giguere@gmail.com>

Description Fit multivariate mixture of normal distribution using covariance structure.

License GPL-3

LazyLoad yes

Repository CRAN

Encoding UTF-8

NeedsCompilation no

Date/Publication 2019-12-17 23:00:02 UTC

R topics documented:

 mmeln-package .. 2
 dmnorm ... 3
 estim ... 4
 exY ... 6
 mmeln ... 6
 plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln 8
 post.mmeln,entropy.mmeln 10

Index 12
mmeln-package
Estimation of Multinormal Mixture Distribution

Description

Fit multivariate mixture of normal distribution using covariance structure.

Details

The DESCRIPTION file:

- **Package:** mmeln
- **Type:** Package
- **Title:** Estimation of Multinormal Mixture Distribution
- **Version:** 1.4
- **Date:** 2019-12-17
- **Author:** Charles-Edouard Giguere
- **Maintainer:** Charles-Edouard Giguere <ce.giguere@gmail.com>
- **Description:** Fit multivariate mixture of normal distribution using covariance structure.
- **License:** GPL-3
- **LazyLoad:** yes
- **Repository:** CRAN
- **Encoding:** UTF-8
- **NeedsCompilation:** no

Index of help topics:

- **dmmnorm**
 Multivariate Normal Density Function
- **estim**
 Maximum Likelihood estimation of the model parameters
- **exY**
 A two mixture example
- **mmeln**
 mmeln : mixture of multivariate normal
- **mmeln.package**
 Estimation of Multinormal Mixture Distribution
- **plot.mmeln**
 Utility methods for objects of class mmeln
- **post.mmeln**
 Posterior probabilities, entropy for mmeln object

~~ An overview of how to use the package, including the most important ~~ ~~ functions ~~

Author(s)

Charles-Edouard Giguere
Maintainer: Charles-Edouard Giguere <ce.giguere@gmail.com>

See Also

mmeln, estim.mmeln, anova.mmeln
Examples

```r
### load an example.
data(exY)

### estimation of the parameters of the mixture.

temps <- factor(1:3)
mmeln1 <- mmeln(Y, G = 2, form.loc = ~temps-1, form.mel = ~1, cov = "CS")
mix1 <- estim(mmeln1, mu = list(rep(1,3), rep(2,3)), tau = c(0),
             sigma = list(c(1,.6), c(1,.6)), iterlim = 100,tol = 1e-6)
mix1
anova(mix1)
plot(mix1,main="Mixture of multivariate normal")
```

dmnorm

Multivariate Normal Density Function

Description

Function to estimate Multivariate Normal Density Function

Usage

```r
dmnorm(X, Mu, Sigma)
```

Arguments

- **X**
 A matrix or a vector (if you have only one multivariate observation) containing the data. This matrix may contain missing data.

- **Mu**
 A mean vector or a matrix where the number of column is p. If Mu is a matrix and X a vector, the density is evaluated for each value of Mu specified in the matrix Mu

- **Sigma**
 The covariance matrix. This matrix must be symmetric positive definite(all eigen values are positive. see eigen)

Details

This methods compute the value of the density function for a given data and a given set of parameters. It works like the R command `dnorm` in the stats package. Although this methods can be used directly it is not intended this way. If you want to estimate density of multivariate normal distribution, the library mvtnorm is more appropriate

Value

This command return a vector of density.
Note

This function can be used as a standalone but is implemented here for use within the mmeln package.

Author(s)

Charles-Édouard Giguère

References

M.S. Srivastava (2002), Methods of Multivariate Statistics, WILEY

See Also

mmeln, eigen

Examples

dmnorm(1:3,1:3,diag(3))

estim

Maximum Likelihood estimation of the model parameters

Description

Compute the MLE of the model parameters using the E-M (Expectation-Maximization) algorithm

Usage

S3 method for class 'mmeln'
estim(X,...,mu=NULL,tau=NULL,sigma=NULL,random.start=FALSE,iterlim=500,tol=1e-8)

Arguments

X
An object of type mmeln containing the design of the model, see mmeln

... For the moments no other arguments can be added

mu A list of length X$G containing the starting value for the location parameters

tau The starting value for the mixture parameters

sigma A list of length X$G containing the starting value for the covariances parameters

random.start A True/False value indicating if the starting parameters should be given at random. If true the starting values are not needed.

iterlim The maximum number of iterations allowed

tol Tolerance, degree of precision required to stop the iterative process
Details

Methods estim.mmeln... are used by the estim function but are of no use outside this method.

Value

Retourne un objet de type "mmeln" & "mmelnSOL" les arguments suivants :

- obj$Y: The data matrix
- obj$G: The number of groups
- obj$p: Number of column in Y
- obj$N: Number of row in Y
- obj$Xg: The list of location design matrices
- obj$p1: The number of location parameters
- obj$Z: Mixture design matrix
- obj$pm: The number of mixture parameters
- obj$cov: Covariance type
- obj$equalcov: logical value indicating if covariance is equal across group
- obj$pc: The number of covariance parameters

Author(s)

Charles-Édouard Giguère

References

Srivastava, M. S. (2002), Methods of Multivariate Statistics, WILEY

See Also

mmeln.package

Examples

data(exY)
estimation of the parameters of the mixture
temps=0:2
mmeln1=mmeln(Y, G = 3, form.loc = list(~temps, ~temps + I(temps^2),
 ~temps + I(temps^2)), form.mel = ~SEXE, cov = "CS")
mmelnSOL1=estim(mmeln1,mu = list(c(1,1), c(2,0,0), c(3,0,0)),
 tau = c(0,0,0,0), sigma = list(c(1,0), c(1,0), c(1,0)))
A two mixture example

Description

A simulated dataset used for example

Format

Two variables are available:

- **SEXE**: A variable identifying sex of participants.
- **Y**: A three column matrix containing the data.

Details

Half of the row follow the distribution \(N[(2,3,4)',\text{matrix}(c(1.,6.,5.,6.,1.,3.,5.,3.,1),3,3))],\) the other half follow the distribution \(N[(-1,5,-2)',\text{matrix}(c(1.,6.,5.,6.,1.,3.,5.,3.,1),3,3))].\)

`mmeln`

`mmeln` : mixture of multivariate normal

Description

constructor for objects of class `mmeln`: mixture of multivariate normal

Usage

```r
mmeln(Y,G=2,p=dim(Y)[2],form.loc=NULL,X=NULL,
form.mel=NULL,Z=NULL,cov="IND",equalcov=FALSE,param=NULL)
```

Arguments

- **Y**: A matrix containing the data used for estimation. This matrix may contain NA but it needs at least one observation per row. It’s assumed that the missing mechanism is not related to the data under study (MAR: Missing At Random).
- **G**: The number of groups in the mixture.
- **p**: Doesn’t need to be specified. It’s the dimension of the multivariate data (number of column in Y)
- **form.loc, X**: Location design of the model. By default, the mean model is used where we estimate \(p\) mean in each group. Only one of these two parameters must be specified depending if the model is specified through a formula (See R documentation) or a design matrix. If you want to specify a different design for each group you must pass the arguments as a list. See examples below for further details. If a formula is used it must use variable of length \(p\) representing the design across time, for example : ~temps where temps=factor(1:4). If a design matrix is used, it must be of dimension \(p*k\) where \(k<=p\).
form.mel,Z Mixture design of the model. Only one of these two parameters must be specified. The design is constant across groups. This is equivalent to multinomial regression.

cov Covariance type (for now only the CS structure is implemented). Enter either the type of covariance as a string or as numeric corresponding to the position in the following choices: 1) UN (general unstructured covariance), 2) CS (Compound Symmetry with constant variance), 3) UCS (Compound Symmetry with unconstant variance), 4) AR1 (Auto-regressive of order 1 with constant variance), 5) UAR1 (Auto-regressive of order 1 with unconstant variance), 6) IND (diagonal structure with constant variance), 7) UIND (diagonal structure with unconstant variance).

equalcov Logical value T/F indicating if the variance is equal across groups. Default to FALSE.

param list of list of parameters. Usually not specified. The parameters should be estimated through the estim.mmeln function. param will look like this list(mu=list(mu1,mu2,...,mug), tau=c(tau1,...,tauk), sigma=list(sigma1,sigma2,...,sigmag)) where mui is the vector of location parameter in the group i and sigmai is the vector of location parameter in the group i for which the length must equal the number of column in the design matrix. Also sigmai is the vector of covariance parameters in the group i. Each covariance is parameterized in a vector containing first the distinct value of standard deviation and then the distinct value of correlation from top to bottom and left to right.

Details

This object describes the way the mixture is design and permits a lot of different modelisation of the data. Many specific methods are associated with this class of objects: print, anova, logLik, post. Once a solution is find through the estim.mmeln function, the object is promoted to an object of class mmelnSOL but inherits of all the attributes and function of the mmeln class but gains is own print method. The attributes in a mmeln object should be accessed via adequate function inside the mmeln library except if handle by an advanced user.

Value

Retourne un objet de type "mmeln" ayant les arguments suivants :

obj$Y The data matrix

obj$Yl A list of length N containing the data in each row without the NA value.

obj$Yv A list of length N indicating the column where there is valid data

obj$p The number of groups

obj$pi A vector where pi[i] is the number of observation in row i

obj$N Number of row in Y

obj$M Number of total observations sum_i=1^N(pi)

obj$Xg The list of location design matrices

obj$pl The number of location parameters
Methods to plot, compare and assessed the log(Likelihood) of objects of class mmeln. The method cov.tsf which convert a vector of covariance parameter into a covariance matrix and multnm which performs an estimation of multinomial model are internal methods that should not be used unless by experimented user.
Usage

```r
## S3 method for class 'mmeln'
plot(x,...,main="",xlab="Temps",ylab="Y",col=1:X$G,leg=TRUE)
## S3 method for class 'mmeln'
logLik(object,...,param=NULL)
## S3 method for class 'mmeln'
anova(object,..., test = TRUE)
## S3 method for class 'mmelnSOL'
print(x,...,se.estim="MLR")
cov.tsf(param,type,p)
```

Arguments

- `x` An object of type `mmeln` or `mmelnSOL` (`mmelnSOL` required for the command `print`)
- `object` An object of type `mmeln`
- `main` Title of the graphic
- `xlab` Label of the X axis
- `ylab` Label of the Y axis
- `col` Colour of the lines plotted in each group
- `leg` Logical value indicating if the legend is plotted or not
- `...` Other object of type `mmeln` to compare (use is only valid in the `anova` command)
- `test` Logical value indicating if the likelihood ratio test is required. Valid only when two objects are entered
- `param` For the function `logLik` a list of parameters like defined in `mmeln`, by default it is taken from the `mmeln` object. For the `cov.tsf` function it is vector containing the distinct value of the covariance as defined in the `mmeln` function
- `type` Type of covariance as defined in `mmeln`
- `p` Rank of covariance matrix
- `se.estim` Type of estimator. The default is MLR based on the information matrix defined as $I \gamma^{-1} = I \gamma^{-1} \gamma I \gamma^{-1}$. The other choices are the Observational information matrix "ML" and the Empirical information matrix based on the cross product of the gradient of the logLikelihood "MLE"

Details

The function `plot` draws XSG lines showing the expected value. The function `logLik` gives the log(Likelihood) of a model. The function `anova` compares `mmeln` models and gives the total number of parameters, the log(Likelihood), the AIC (Akaike information criterion), the BIC (Bayesian information criterion based on the number of observation) and the BIC2 (BIC based on the number of subjects). Optionally, the Likelihood ratio test is performed. The function `print` is used for solution given by the `estim.mmeln` function. The print method gives the number of iterations required for convergence and the statistics for the location, mixture and covariance parameters.
Author(s)

Charles-Édouard Giguère

References

Bernard D. Flury (1997), A first course in multivariate statistics, Springer

M.S. Srivastava (2002), Methods of Multivariate Statistics, WILEY

See Also

mmeln

Examples

```r
### load an example.
data(exY)

### estimation of the parameters of the mixture
temps=1:3
mmeln1=mmeln(Y,G=2,form.loc=factor(temps)-1,form.mel=-1,cov="CS")
mmeln2=mmeln(Y,G=2,form.loc=list(~temps,-I((temps-2)^2)),form.mel=-1,cov="CS")

mix1=estim(mmeln1,mu=list(rep(1,3),rep(2,3)),tau=c(0)
          ,sigma=list(c(1,.4),c(1,.4)),iterlim=100,tol=1e-6)
mix2=estim(mmeln2,mu=list(c(2,1),c(5,-1)),tau=c(0)
          ,sigma=list(c(1,.4),c(1,.4)),iterlim=100,tol=1e-6)

mix1
mix2

anova(mix1,mix2)
plot(mix1,main="Mixture of multivariate normal")
plot(mix2,main="Mixture of multivariate normal")
```

Description

Compute the posterior probabilities of membership in each group of the mixture
Usage

\[
\begin{align*}
\text{post}\,(X, ..., \mu = X\text{param}\mu, \tau = X\text{param}\tau, \sigma = X\text{param}\sigma) \\
\text{entropy}(X, ...)
\end{align*}
\]

Arguments

- **X**: An object of type `mmeln` containing the design of the model.
- **...**: These parameters are useless.
- **mu**: Location parameters. By default, those are taken from `X`.
- **tau**: Mixture parameters. By default, those are taken from `X`.
- **sigma**: Covariance parameters. By default, those are taken from `X`.

Details

This procedure returns the posterior probabilities of membership in each groups or the entropy of the model. They were computed as described in McLachlan and Peel (2000). If the parameters `X$param` is not null no further parameters are necessary, otherwise you have to give a value for mu, tau, sigma (this is mainly used inside the `estim.mmeln` function).

Value

Returns a matrix `P` with `X$N` row and `X$G` column where `P[i,j]` is the posterior probabilities of subject `i` being in the group `j` or the value of entropy.

Author(s)

Charles-Édouard Giguère

References

See Also

`estim.mmeln`

Examples

```r
#### load an example.
data(exY)
### estimation of the parameters of the mixture
temps <- factor(1:3)
mmeln1 <- mmeln(Y, G = 2, form.loc = ~temps - 1, form.mel = ~1, cov = "CS")
mix1 <- estim(mmeln1, mu = list(rep(1,3),rep(2,3)), tau = c(0),
              sigma = list(c(1, .4), c(1, .4)), iterlim = 100, tol = 1e-6)
post(mix1)
entropy(mix1)
```
Index

* datasets
 exY, 6
* density
 dnorm, 3
 dnorm, 3
* mixture
 estim, 4
 mmeln, 6
 plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln, 8
 post.mmeln, entropy.mmeln, 10
* mmeln
 estim, 4
 mmeln, 6
 plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln, 8
 post.mmeln, entropy.mmeln, 10
* multivariate normal
 dnorm, 3
* multivariate
 estim, 4
 mmeln, 6
 plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln, 8
 post.mmeln, entropy.mmeln, 10
* normal
 estim, 4
 mmeln, 6
 plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln, 8
 post.mmeln, entropy.mmeln, 10
* package
 mmeln-package, 2
 anova.mmeln
 (plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln, 8
 post.mmeln, entropy.mmeln, 10
 cov.tsf
 (plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln, 8
 post.mmeln, entropy.mmeln, 10
print.mmelnSOL
 (plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln), 8

SEXE (exY), 6

Xinv(estim), 4

Y (exY), 6