Package ‘reglogit’

April 25, 2023

Type Package
Title Simulation-Based Regularized Logistic Regression
Version 1.2-7
Date 2023-04-21
Author Robert B. Gramacy <rbg@vt.edu>
Maintainer Robert B. Gramacy <rbg@vt.edu>
Depends R (>= 2.14.0), methods, mvtnorm, boot, Matrix
Suggests plgp
Description Regularized (polychotomous) logistic regression
 by Gibbs sampling. The package implements subtly different
 MCMC schemes with varying efficiency depending on the data type
 (binary v. binomial, say) and the desired estimator (regularized maximum
 likelihood, or Bayesian maximum a posteriori/posterior mean, etc.) through a
License LGPL
URL https://bobby.gramacy.com/r_packages/reglogit/
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-04-25 07:40:02 UTC

R topics documented:

 pima ... 2
 predict.reglogit ... 3
 reglogit ... 5

Index 10
Description

A population of women who were at least 21 years old, of Pima Indian heritage and living near Phoenix, Arizona, was tested for diabetes according to World Health Organization criteria. The data were collected by the US National Institute of Diabetes and Digestive and Kidney Diseases.

Usage

data(pima)

Format

A data frame with 768 observations on the following 9 variables.

npreg number of pregnancies
blu plasma glucose concentration in an oral glucose tolerance test
bp diastolic blood pressure (mm Hg)
skin triceps skin fold thickness (mm)
serum 2-hour serum insulin (mu U/ml)
bmi body mass index (weight in kg/(height in m)^2)
ped diabetes pedigree function
age age in years
y classification label: 1 for diabetic

Source

UCI Machine Learning Repository
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

Examples

data(pima)
see reglogit documentation for an example using this data
predict.reglogit

Description
Sampling from the posterior predictive distribution of a regularized (polychotomous) logistic regression fit, including entropy information for variability assessment.

Usage
S3 method for class 'reglogit'
predict(object, XX, burnin = round(0.1 * nrow(object$beta)), ...)
S3 method for class 'regmlogit'
predict(object, XX, burnin = round(0.1 * dim(object$beta)[1]), ...)

Arguments
- object a "reglogit"-class object or a "regmlogit"-class object, depending on whether binary or polychotomous methods were used for fitting
- XX a matrix of predictive locations where ncol(XX) == object$ncol(XX).
- burnin a scalar positive integer indicate the number of samples of object$beta to discard as burn-in; the default is 10% of the number of samples
- ... For compatibility with generic predict method; not used

Details
Applies the logit transformation (reglogit) or multinomial logit (regmlogit) to convert samples of the linear predictor at XX into a samples from a predictive posterior probability distribution. The raw probabilities, averages (posterior means), entropies, and posterior mean cases (arg-max of the average probabilities) are returned.

Value
The output is a list with components explained below. For predict.regmlogit everything (except entropy) is expanded by one dimension into an array or matrix as appropriate.

- p a nrow(XX) x (T-burnin) sized matrix of probabilities (of class 1) from the posterior predictive distribution.
- mp a vector of average probabilities calculated over the rows of p
- pc class labels formed by rounding (or arg max for predict.regmlogit) the values in mp
- ent The posterior mean entropy given the probabilities in mp

Author(s)
Robert B. Gramacy <rbg@vt.edu>
References

See Also

reglogit and regmlogit

Examples

see reglogit for a full example of binary classification complete with
sampling from the posterior predictive distribution.

the example here is for polychotomous classification and prediction

Not run:
library(plgp)
x <- seq(-2, 2, length=40)
X <- expand.grid(x, x)
C <- exp2d.C(X)
xx <- seq(-2, 2, length=100)
XX <- expand.grid(xx, xx)
CC <- exp2d.C(XX)

build cubically-expanded design matrix (with interactions)
Xe <- cbind(X, X[,1]^2, X[,2]^2, X[,1]*X[,2],
X[,1]^3, X[,2]^3, X[,1]^2*X[,2], X[,2]^2*X[,1],
(X[,1]*X[,2])^2)

perform MCMC
T <- 1000
out <- regmlogit(T, C, Xe, nu=6, normalize=TRUE)

create predictive (cubically-expanded) design matrix
XX <- as.matrix(XX)
XXe <- cbind(XX, XX[,1]^2, XX[,2]^2, XX[,1]*XX[,2],
XX[,1]^3, XX[,2]^3, XX[,1]^2*XX[,2], XX[,2]^2*XX[,1],
(XX[,1]*XX[,2])^2)

predict class labels
p <- predict(out, XXe)

make an image of the predictive surface
cols <- c(gray(0.85), gray(0.625), gray(0.4))
par(mfrow=c(1,3))
image(xx, xx, matrix(CC, ncol=length(xx)), col=cols, main="truth")
image(xx, xx, matrix(p[,c, ncol=length(xx)), col=cols, main="predicted")
image(xx, xx, matrix(p$ent, ncol=length(xx)), col=heat.colors(128),
main="entropy")
Description

Regularized (multinomial) logistic regression by Gibbs sampling implementing subtly different MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the desired estimator (regularized maximum likelihood, or Bayesian maximum a posteriori/posterior mean, etc.) through a unified interface.

Usage

```r
reglogit(T, y, X, N = NULL, flatten = FALSE, sigma = 1, nu = 1, kappa = 1, icept = TRUE, normalize = TRUE, zzero = TRUE, powerprior = TRUE, kmax = 442, bstart = NULL, lt = NULL, nup = list(a = 2, b = 0.1), save.latents = FALSE, verb = 100)
regmlogit(T, y, X, flatten = FALSE, sigma = 1, nu = 1, kappa = 1, icept = TRUE, normalize = TRUE, zzero = TRUE, powerprior = TRUE, kmax = 442, bstart = NULL, lt = NULL, nup = list(a = 2, b = 0.1), save.latents = FALSE, verb = 100)
```

Arguments

- **T**: a positive integer scalar specifying the number of MCMC rounds
- **y**: reglogit requires logical classification labels for Bernoulli data, or counts for Binomial data; for the latter, `N` must also be specified. regmlogit requires positive integer class labels in 1:C where C is the number of classes.
- **X**: a design matrix of predictors; can be a typical (dense) matrix or a sparse `Matrix` object. When the design matrix is sparse (and is stored sparsely), this can produce a ~3x-faster execution via a more efficient update for the beta parameter. But when it is not sparse (but is stored sparsely) the execution could be much slower.
- **N**: an optional integer vector of total numbers of replicate trials for each `X-y`, i.e., for Binomial data instead of Bernoulli
- **flatten**: a scalar logical that is only specified for Binomial data. It indicates if preprocessing code should flatten the Binomial likelihood into a Bernoulli likelihood
- **sigma**: weights on the regression coefficients in the lasso penalty. The default of 1 is sensible when `normalize = TRUE` since then the estimator for beta is equivariant under rescaling
- **nu**: a non-negative scalar indicating the initial value of the penalty parameter
kappa a positive scalar specifying the multiplicity; \(\text{kappa} = 1 \) provides samples from the Bayesian posterior distribution. Larger values of \(\text{kappa} \) facilitates a simulated annealing approach to obtaining a regularized point estimator

\(\text{iccept} \) a scalar logical indicating if an (implicit) intercept should be included in the model

\(\text{normalize} \) a scalar logical which, if TRUE, causes each variable is standardized to have unit L2-norm, otherwise it is left alone

\(\text{zzero} \) a scalar logical indicating if the latent \(z \) variables to be sampled. Therefore this indicator specifies if the cdf representation (\(\text{zzero} = \text{FALSE} \)) or pdf representation (otherwise) should be used

\(\text{powerprior} \) a scalar logical indicating if the prior should be powered up with multiplicity parameter \(\text{kappa} \) as well as the likelihood

\(\text{kmax} \) a positive integer indicating the number replacing infinity in the sum for mixing density in the generative expression for \(\lambda \)

\(\text{bstart} \) an optional vector of length \(p = \text{ncol}(X) \) specifying initial values for the regression coefficients \(\beta \). Otherwise standard normal deviates are used

\(\text{lt} \) an optional vector of length \(n = \text{nrow}(X) \) of initial values for the \(\lambda \) latent variables. Otherwise a vector of ones is used.

\(\text{nup} \) prior parameters \(= \text{list}(a, b) \) for the inverse Gamma distribution prior for \(\nu \), or \Null, which causes \(\nu \) to be fixed

\(\text{save.latents} \) a scalar logical indicating wether or not a trace of latent \(z, \lambda \) and \(\omega \) values should be saved for each iteration. Specify \(\text{save.latents} = \text{TRUE} \) for very large \(X \) in order to reduce memory swapping on low-RAM machines

\(\text{verb} \) A positive integer indicating the number of MCMC rounds after which a progress statement is printed. Giving \(\text{verb} = 0 \) causes no statements to be printed

Details

These are the main functions in the package. They support an omnibus framework for simulation-based regularized logistic regression. The default arguments invoke a Gibbs sampling algorithm to sample from the posterior distribution of a logistic regression model with lasso-type (double-exponential) priors. See the paper by Gramacy & Polson (2012) for details. Both cdf and pdf implementations are provided, which use slightly different latent variable representations, resulting in slightly different Gibbs samplers. These methods extend the un-regularized methods of Holmes & Held (2006)

The \(\text{kappa} \) parameter facilitates simulated annealing (SA) implementations in order to help find the MAP, and other point estimators. The actual SA algorithm is not provided in the package. However, it is easy to string calls to this function, using the outputs from one call as inputs to another, in order to establish a SA schedule for increasing kappa values.

The \(\text{regmlogit} \) function is a wrapper around the Gibbs sampler inside \(\text{reglogit} \), invoking \(C-1 \) linked chains for \(C \) classes, extending the polychotomous regression scheme outlined by Holmes & Held (2006). For an example with \(\text{regmlogit} \), see \(\text{predict.regmlogit} \)
Value

The output is a list object of type "reglogit" or "regmlogit" containing a subset of the following fields; for "regmlogit" everything is expanded by one dimension into an array or matrix as appropriate.

- **X**: the input design matrix, possible adjusted by normalization or intercept
- **y**: the input response variable
- **beta**: a matrix of T sampled regression coefficients on the original input scale
- **z**: if zzero = FALSE a matrix of latent variables for the hierarchical cdf representation of the likelihood
- **lambda**: a matrix of latent variables for the hierarchical (cdf or pdf) representation of the likelihood
- **lpost**: a vector of log posterior probabilities of the parameters
- **map**: the list containing the maximum a’ posterior parameters; outmapbeta is on the original scale of the data
- **kappa**: the input multiplicity parameter
- **omega**: a matrix of latent variables for the regularization prior

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

See Also

predict.reglogit, predict.regmlogit, blasso and regress

Examples

```r
## load in the pima indian data
data(pima)
X <- as.matrix(pima[,,-9])
y <- as.numeric(pima[,9])

## pre-normalize to match the comparison in the paper
one <- rep(1, nrow(X))
normx <- sqrt(drop(one %*% (X^2)))
X <- scale(X, FALSE, normx)

## compare to the GLM fit
fit.logit <- glm(y~X, family=binomial(link="logit"))
```
bstart <- fit.logit$coef

do the Gibbs sampling
T <- 300 ## set low for CRAN checks; increase to >= 1000 for better results
out6 <- reglogit(T, y, X, nu=6, nup=NULL, bstart=bstart, normalize=FALSE)

plot the posterior distribution of the coefficients
burnin <- (1:(T/10))
boxplot(out6$beta[-burnin,], main="nu=6, kappa=1", ylab="posterior",
 xlab="coefficients", bty="n", names=c("mu", paste("b", 1:8, sep="")))
abline(h=0, lty=2)

add in GLM fit and MAP with legend
points(bstart, col=2, pch=17)
points(out6mapbeta, pch=19, col=3)
legend("topright", c("MLE", "MAP"), col=2:3, pch=c(17,19))

simple prediction
p6 <- predict(out6, XX=X)

hit rate
mean(p6$c == y)

for a polychotomous example, with prediction,
see ? predict.regmlogit

Not run:
now with kappa=10
out10 <- reglogit(T, y, X, kappa=10, nu=6, nup=NULL, bstart=bstart,
 normalize=FALSE)

plot the posterior distribution of the coefficients
par(mfrow=c(1,2))
boxplot(out10$beta[-burnin,], main="nu=6, kappa=10", ylab="posterior",
 xlab="coefficients", bty="n", names=c("mu", paste("b", 1:8, sep="")))
abline(h=0, lty=2)
points(bstart, col=2, pch=17)
points(out10mapbeta, pch=19, col=3)
legend("topright", c("MLE", "MAP"), col=2:3, pch=c(17,19))

add in GLM fit and MAP with legend
points(bstart, col=2, pch=17)
points(out10mapbeta, pch=19, col=3)
legend("topright", c("MLE", "MAP"), col=2:3, pch=c(17,19))

End(Not run)

now some binomial data
Not run:
synthetic data generation
library(boot)
N <- rep(20, 100)
beta <- c(2, -3, 2, -4, 0, 0, 0, 0)
X <- matrix(rnorm(length(N)*length(beta)), ncol=length(beta))
eta <- drop(1 + X %*% beta)
p <- inv.logit(eta)
y <- rbinom(length(N), N, p)

run the Gibbs sampler for the logit -- uses the fast Binomial
version; for a comparison, try flatten=FALSE
out <- reglogit(T, y, X, N)

plot the posterior distribution of the coefficients
boxplot(out$beta[-burnin,], main="binomial data", ylab="posterior",
 xlab="coefficients", bty="n",
 names=c("mu", paste("b", 1:ncol(X), sep="")))
abline(h=0, lty=2)

add in GLM fit, the MAP fit, the truth, and a legend
fit.logit <- glm(y/N~X, family=binomial(link="logit"), weights=N)
points(fit.logit$coef, col=2, pch=17)
points(c(1, beta), col=4, pch=16)
points(outmapbeta, pch=19, col=3)
legend("topright", c("MLE", "MAP", "truth"), col=2:4, pch=c(17,19,16))

also try specifying a larger kappa value to pin down the MAP

End(Not run)
Index

* **classif**

 predict.reglogit, 3
 reglogit, 5

* **datasets**

 pima, 2

* **methods**

 reglogit, 5

* **models**

 predict.reglogit, 3

blasso, 7

Matrix, 5

pima, 2

predict, 3

predict.reglogit, 3, 7

predict.regmlogit, 6, 7

predict.regmlogit (predict.reglogit), 3

reglogit, 4, 5

regmlogit, 4

regmlogit (reglogit), 5

regress, 7