Package ‘rseedcalc’

October 14, 2022

Title Estimating the Proportion of Genetically Modified Seeds in Seedlots via Multinomial Group Testing

Version 1.3

Type Package

Date 2013-10-10

Description Estimate the percentage of seeds in a seedlot that contain stacks of genetically modified traits. Estimates are calculated using a multinomial group testing model with maximum likelihood estimation of the parameters.

License GPL-2

Imports stats

Author Kevin Wright [aut, cre], Jean-Louis Laffont [aut]

Maintainer Kevin Wright <kw.stat@gmail.com>

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-03 05:44:56

R topics documented:

rseedcalc-package .. 2
stack3 ... 2
valid ... 4

Index 5
rseedcalc-package

Estimation of the proportion of genetically modified stacked seeds in seedlots

Description

Estimate the percentage of seeds in a seedlot that contain stacks of genetically modified traits.

Details

The main functions for this package are `stack2` and `stack3`.

For a complete list of functions, use `library(help="rseedcalc")`

Author(s)

Kevin Wright, Jean-Louis Laffont

Maintainer: Kevin Wright <kw.stat@gmail.com>

stack3

Multinomial group testing estimation of stacked genes

Description

Assuming qualitative tests are performed on `n` pools of `m` seeds, use multinomial group testing to estimate the percent of seeds with single genetic traits and the percentage of seeds with stacked genetic traits.

Print method for seedstack object.

Usage

```r
stack3(n, m, nA, nB, nC, nAB, nAC, nBC, nABC, existAB = "Yes", existAC = "Yes", existBC = "Yes", existABC = "Yes", fpr = 0, fnr = 0, check = TRUE)
```

```r
stack2Excel(...)  
stack3Excel(...)  
stack2(n, m, nA, nB, nAB, existAB = "Yes", fpr = 0, fnr = 0, check = TRUE)  
```

```r
# S3 method for class 'seedstack'  
print(x, ...)  
```
Arguments

- **n**: the number of pools
- **m**: the number of seeds in each pool
- **nA**: the number of positive pools for event A only
- **nB**: the number of positive pools for event B only
- **nAB**: the number of positive pools for both A and B
- **nC**: the number of positive pools for event C only
- **nAC**: the number of positive pools for both A and C
- **nBC**: the number of positive pools for both B and C
- **nABC**: the number of positive pools for both A and B and C
- **existAB**: do seeds with a stacked event ’AB’ exist?
- **existAC**: do seeds with a stacked event ’AC’ exist?
- **existBC**: do seeds with a stacked event ’BC’ exist?
- **existABC**: do seeds with a stacked event ’ABC’ exist?
- **fpr**: false positive rate (proportion) for detecting GM events
- **fnr**: false negative rate (proportion) for detecting GM events
- **check**: Should simple checks be performed? Defaults to TRUE
- **x**: A data frame to print pretty.

Details

The 'stack2Excel' and 'stack3Excel' functions are simple wrappers that are intended to be called from Excel and should not issue any warnings.

Value

A data frame with the estimated proportion of seeds for each event, the observed and expected number of positive pools, and whether or not each event can exist.

Author(s)

Kevin Wright, Jean-Louis Laffont

Examples

```r
stack2(10, 300, 0, 1, 2)
stack3(20,150, 2,2,2,2,2,2,3, existAB="no", fnr=.02, fpr=.02)
```
valid #' Ensure probabilities are valid

Description

Force calculated probabilities into the range [0,1].

Usage

valid(x)

Arguments

- x probability

Details

Due to floating-point arithmetic, a number that should represent a probability can be calculated as being less than zero or greater than one. This function returns a value that is a valid probability.
Index

* package
 rseedcalc-package, 2

print.seedstack (stack3), 2

rseedcalc (rseedcalc-package), 2
rseedcalc-package, 2

stack2, 2
stack2 (stack3), 2
stack2Excel (stack3), 2
stack3, 2, 2
stack3Excel (stack3), 2

valid, 4