Package ‘soilwater’

October 14, 2022

Maintainer Emanuele Cordano <emanuele.cordano@gmail.com>
License GPL (>= 2)
Title Implementation of Parametric Formulas for Soil Water Retention or Conductivity Curve
Type Package
Author Emanuele Cordano, Daniele Andreis, Fabio Zottele
Description It implements parametric formulas of soil water retention or conductivity curve. At the moment, only Van Genuchten (for soil water retention curve) and Mualem (for hydraulic conductivity) were implemented.
Suggests raster
Version 1.0.5
Date 2017-07-28

URL https://github.com/ecor/soilwater
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-07-29 05:12:49 UTC

R topics documented:

 swc ... 2
 unitResponse ... 4
 watervolume ... 5

Index

1
Soil Water Retention Curve 'swc', Hydraulic Conductivity 'khy', Soil Water Capacity 'cap', Soil Water (Hydraulic) Diffusivity 'diffusivity'

Usage

```r
swc(psi = 0.5, alpha = 1, n = 1.5, m = 1 - 1/n, theta_sat = 0.4, theta_res = 0.05, psi_s = -1/alpha, lambda = m * n, saturation_index = FALSE, type_swc = c("VanGenuchten", "BrooksAndCorey"), ...)
```

```r
khy(psi = 0.5, v = 0.5, ksat = 0.01, alpha = 1, n = 1.5, m = 1 - 1/n, theta_sat = 0.4, theta_res = 0.05, psi_s = -1/alpha, lambda = m * n, b = NA, type_swc = "VanGenuchten", type_khy = c("Mualem", "BrooksAndCorey"), ...)
```

```r
cap(psi = 0.5, alpha = 1, n = 1.5, m = 1 - 1/n, theta_sat = 0.4, theta_res = 0.05, type_swc = "VanGenuchten", ...)
```

```r
diffusivity(psi = 0.5, v = 0.5, ksat = 0.01, alpha = 1, n = 1.5, m = 1 - 1/n, theta_sat = 0.4, theta_res = 0.05, ...)
```

Arguments

- **psi**: soil water pressure head
- **alpha**: inverse of a length - scale parameters in Van Genuchten Formula
- **n**: shape parameter in Van Genuchten Formula
- **m**: shape parameter in Van Genuchten Formula. Default is 1-1/n
- **theta_sat**: saturated water content
- **theta_res**: residual water content
- **psi_s**: psi_s value (capillary fringe) in Brook and Corey formula. It is used in case type_swc and/or type_khy are equal to BrooksAndCorey.
- **lambda, b**: lambda and b exponents in Brook and Corey formula. It is used in case type_swc and/or type_khy are equal to BrooksAndCorey.
- **saturation_index**: logical index, If TRUE (Default) the function swc() returns soil water content, otherwise a saturation index between 0 and 1.
- **type_swc**: type of Soil Water Retention Curve. Default is "VanGenuchten" and actually the only implemented type
- ... further arguments which are passed to swc() and khy()
v exponent in Mualem Formula for Hydraulic Conductivity
ksat saturated hydraulic conductivity
type_khy type of Soil Hydraulic Conductivity Curve. Default is "Mualem" and actually the only implemented type

Examples

library(soilwater)
soiltype <- c("sand","silty-sand","loam","clay")
theta_sat <- c(0.44,0.39,0.51,0.48)
theta_res <- c(0.02,0.155,0.04,0.10)
alpha <- c(13.8,6.88,9.0,2.7) # 1/meters
n <- c(2.09,1.881,1.42,1.29)
m <- 1-1/n
v <- array(0.5,length(soiltype))
ks <- c(1.5e-1,1e-4*3600,3.3e-2,4.1e-4)/3600 # meters/seconds
psi <- -(1:2000)/1000

D <- as.data.frame(array(0.1,c(length(psi),length(soiltype))))
names(D) <- soiltype
for (it in names(D)) {
 i=which(names(D)==it)
 D[,i] <- diffusivity(psi=psi,
 v=v[i],ksat=ks[i],alpha=alpha[i],
 n=n[i],m=m[i],theta_sat=theta_sat[i],
 theta_res=theta_res[i])
}

plot diffusivity on log scale
lty <- 1:length(names(D))
plot(psi,D[,1],lty=lty[1],main="Diffusivity vs psi",xlab="psi [m]",
 ylab="D [m^2/s]",type="l",ylim=range(D),ylog=TRUE)
for (i in 2:ncol(D)) {
 lines(psi,D[,i],lty=lty[i])
} legend("topleft",lty=lty,legend=names(D))

Dinv <- 1/D

plot diffusivity on log scale
lty <- 1:length(names(D))
plot(psi,Dinv[,1],lty=lty[1],main="1/Diffusivity vs psi",
 xlab="psi [m]",ylab="1/D [s/m^2]",type="l",ylim=range(Dinv),ylog=TRUE)
for (i in 2:ncol(Dinv)) {
 lines(psi,Dinv[,i],lty=lty[i])
} legend("topright",lty=lty,legend=names(D))
unitResponse

The water table recharge: the response unit

Description

The water table recharge: the response unit

Usage

unitResponse(t, d = 1, D = 1, H = d, m = 100)

Arguments

t time coordinate

d depth of unsaturated zone along the slope-normal direction

D soil water diffusivity

H soil depth

m maximum limit of summary truncation. Default is 100.

Note

This function calculates the water-table recharge rate in a hillslope assuming:
1. Richards’ Equation is linearized and reduced to the form of heat equation;
2. The diffusion water-table rate is connected with soil pressure head according with eq. 13 (Cordano and Rigon, 2008);

References

Examples

library(soilwater)

t <- seq(0,2,by=0.001)
d <- c(1,0.75,0.5,0.25)
val1 <- unitResponse(t, d = d[1], D = 1, H = d, m = 500)
val2 <- unitResponse(t, d = d[2], D = 1, H = d, m = 500)
val3 <- unitResponse(t, d = d[3], D = 1, H = d, m = 500)
val4 <- unitResponse(t, d = d[4], D = 1, H = d, m = 500)
watervolume

Water volume in function of water-table depth or height 'swc', Hydraulic Conductivity 'khy', Soil Water Capacity 'cap', Soil Water (Hydraulic) Diffusivity 'diffusivity'

Description

Water volume in function of water-table depth or height 'swc', Hydraulic Conductivity 'khy', Soil Water Capacity 'cap', Soil Water (Hydraulic) Diffusivity 'diffusivity'

Usage

```r
watervolume(d = H - h, H = 1, h = NA, nstep = 100, Gamma = 1,
            soilwaterretentioncurve = swc, ...)
```

Arguments

- `d`: water-table depth (under surface)
- `H`: soil thickness
- `h`: water-table height (over bedrock)
- `nstep`: number of vertical spatial cells. Default is 100
- `Gamma`: liner coefficient for hydrostatic profile (Default is 1)
- `soilwaterretentioncurve`: function describing the soil water retention curve. Default is `swc`
- `...`: parameters for `soil.water.retention.curve`

Note

The water volume per topographical area unit obtained by vertical integration off soil water content profile

See Also

`swc`
Index

cap (swc), 2

diffusivity (swc), 2

khy (swc), 2

swc, 2, 5

unitResponse, 4

watervolume, 5